
CONTROL THE WORLD
RNRlnB

22
GARY FRIEDMAN

A New World Of Uses For Hewlett-

Packard Handheld Computers

CONTROL THE WORLD

WITH HP-IL

A New World Of Uses for Hewlett-

Packard Handheld Computers

By
GARY FRIEDMAN

Pictorial Artwork by

Steve Luchsinger

Published by Synthetix
P.0. Box 1080

Berkeley, CA 94701-1080

USA

© 1987 by SYNTHETIX, Berkeley, CA 94701-1080

All rights reserved. No part of this book may be reproduced in

any form or by any means without permission in writing from the

publisher.

Rocky and Bullwinkle cartoons copyright P.A.T. Ward Productions.

Characters used with permission.

Library of Congress Catalog Card Number: 87-60210

ISBN 0-9612174-9-9

To my parents,

who during the course of this book

have forgotton what I look like.

Special thanks to:

Ken Emery, David Erbas-White, Michael D. Varnen,

Sergio Morales, Jason and Jenni Levine,

Ruth Brodsley, and Brian Ramage.

TABLE OF CONTENTS

FoOreword...o.oiuinieievii
Ch.1 The BasiCS..ciiiiiiiiiiiieiiiiiiie 1

Ch.2 More Simple Examples.....ccccoovviiniiiiiiiiiiiinniennnenn.. 41
Ch.3 Inexpensive I/O Using the Time Module.................. 53
Ch.4 Darkroom Controller.........ccooeiveuiiiniiiiiiiiiinennnenn. 69

Ch.5 Speech Synthesis......cccccoiviiiiiiiiiiiiiiiiiiierceieieens 105

Ch.6 Intelligent Autodialer............cooeiiiiiiiiiiiiiiininnnnnen. 119

Ch.7 Telephone Answering Machine Utilizing

Speech Synthesis and Touch Tone ® Decoding......... 149

Ch.8 Keyboards for the 71....cccccoiuiiiiiiiiiiiiiiniiiiiiinnn, 175
Ch.9 [Electronic Tape Measure........ccoceeeeeneenneenieennenneennns 205

Ch.10 Slide Projector Dissolve Unit....cc...ccovviiiniiiinnnnnnnnn.. 233

Ch.11 An Introduction to RS-232........cccccciiiiiiiiiiiiiinnnnnnn. 257

Appendices

A. Barcode for 41 Programs.........cccccccceereeeereeeeerereeeeenennens 271
B. Sources of Non-Standard Items.......c...ccoooevuiiiiniinnnnnnnn. 297

C. Dissertation as to Why Positive Handshake Logic

is Not Worth Pursuing........ccoeeceeeeiiiiiiiiiiiiniinninnneennn. 301

D. Pinouts of Common Integrated Circuits..........cccceeeeeins 305

B, GlOSSaATYettt309

ATLETWOT.ettt317

TAOXetttetettt 321

FOREWORD

There is probably no group of people in existence that can

appreciate all of the 41's capabilities more than college students
who must constantly crunch numbers. As opposed to
professionals who use it for a handful of things in their day-to-day
activities, students rely on it most of the day to help solve an
incredibly diverse set of problems. And the more one is introduced
to new mathematical applications, the more one can appreciate
the power and versatility of this simple-looking machine!

But most people never see the power ofboth the HP-41 and HP-71

pocket computers beyond their obvious number-crunching

capability. With the addition of a deceivingly simple-looking

interface, these same calculators are transformed into powerful
controllers that can interact with over 900 devices in the outside

world simultaneously! Coupled with their characteristic small

size, continuous memory and low power consumption, they are

uniquely suited to field applications that everyone else's IBM or
Apple would be too bulky, noisy, and cumbersome to implement.

Control the World with HP-IL illustrates the interface
capabilities of the HP-41 and 71. It shows useful and (to be certain)
unique functions that exploit these machines' unique properties

and offers enough background so you can design solutions to suit
your own applications.

Many chapters in this book provide complete information for you

to duplicate what's presented; others are designed to give you

enough background information so you can implement your own

modifications. Or, as is the case in Chapter 8, enough information

for you to convert whatever is available into something quite

Control The World with HP-IL

useful.
This book assumes the reader is reasonably familiar with either

the HP41 or 71 handheld computers, and has a very basic

knowledge of digital electronics (i.e., knows what a gate is), and is
confident about their ability to solder and disassemble things.
Although I do try to describe the circuits at a detailed level for

those who are unfamiliar with electronics, experience and

experimentation are the best tools to insure project completion,

and most of all learning.

Chapter One

THE BASICS

"There are only 2 kinds ofpeople:
those who own Hewlett Packard calculators,
and those who say, ‘Where's the equals?’.”

--G. Friedman

This book is centered around 2 pocket-sized units you can use to

control the outside world: the Hewlett Packard 41 and 71
computers. Do not let their size fool you; both machines were light

years ahead of their time when they were introduced.
I prefer these small controlling machines to their more famous

larger counterparts for some fairly fundamental reasons: 1) for
control applications, they are just as powerful as the larger
machines, (even more so when the 71's math capabilities are

compared), 2) HP-IL (Hewlett Packard Interface Loop) gives you an
order of magnitude more Input/Output (I/O) opportunities than

ANY personal computer, and 3) you can use them in the field, as
they do not need to be tied to an AC outlet. This last point is
especially important if the devices you are controlling are battery
operated, such as the time exposure camera controller of Chapter

3.
There are many who might say these machines greatly lack the

speed necessary for any application involving instant response to

an event, and therefore should not be bothered with. To this I say
HA!!!, and I offer as evidence the chapters covering ultrasonic
distance measurement, the intelligent autodialer that can

recognize ringing and busy signals, and the slide projector

dissolve unit, which varies the intensities of 2 high-wattage lamps

Control The World with HP-IL

using pulse-width modulation in real time! (Don't worry; these

terms will all be explained clearly later.)

The Machines

In order to demonstrate versatility, two handhelds will be

utilized in this book: the HP41C/CV/CX calculator, and the HP71B

BASIC computer. Because it is unlikely that any person would

own both, brief descriptions of each are presented here, and some

of their strengths and weaknesses can be explained, and then later

on exploited.

The HP-41

Possibly the most powerful handheld calculator ever made, the
41 was designed to be efficient, versatile, and easy-to-use. A

numeric-entry system called RPN (which stands for Reverse

Polish Notation, giving credit to the origins of this method) allows

users to get answers using fewer keystrokes, bypassing the

traditional nested parentheses and "equals" keys. Most people are
put off by this feature because it does take a while to learn, but ask

anyone who has invested the few hours it takes to master it and

they will tell you about the quantum level of superiority RPN has

over any other method.
This characteristic is further enhanced by programmability, a

feature thatis so straightforward on the 41 that learning RPN and

learning how to program are practically the same thing.

4 expansion slots, or "ports”, exist on the 41 to add to its existing

built-in library of over 200 functions, and to give it extra capabilities

such as timer and alarm functions or the ability to communicate

with peripherals.
The 41 comes in 3 flavors: The just-described 41C, a unit so basic

that it's no longer being made; the 41CV, which is identical to the

41C except that it has the maximum amount of memory already

built in, thereby freeing a port space; and finally the 41CX, which

builds on the CV by adding a Time module, Extended

Functions/Extended memory module, and even throws in some

extra functions never before seen on a 41. The unit you choose

The Basics

depends on what level you plan to exploit your calculator and how

many port spaces you plan to occupy while exploiting it.

Configured properly, any flavor 41 provides a tool, forever at your
disposal, that can solve your unique problems more easily than
any other machine available today.

The Extra ROMS

The 41, however, initially has several shortcomings when it

comes to acting as a controller. These stem mostly from the fact

that it was the first machine to implement HP-IL, (it's murder
being a pioneer!) and back then the designers had only envisioned

an interface that was so user-friendly that people wouldn't NEED

to have low-level control of the loop. The 41's HP-IL was initially
introduced with 2 products designed to work together: the 82162A
thermal printer and 82161A digital cassette drive, and if these

were your only 2 peripherals, you'd swear that the system was

well-implemented.

Well, suddenly other HP divisions started producing HP-IL
products that actually adhered to specifications (like responding to

"Send Device ID" requests, something the original printer and

tape drive didn't do), and it was clear that new functions had to be
provided. HP then came out with 2 plug-in ROMs as an

afterthought: The IL Development ROM, which gave absolute

control to those who knew what they were doing, and the Extended

I/O ROM,for "the rest of us". AT LEAST ONE of these ROMS is

mandatory for just about every project described henceforth. In

most cases it doesn't matter, except for Chapter 4, which requires

the Development ROM. (An explanation of HP-IL and how this

ROM is used will also be presented later.)

The other shortcoming of the 41, the inability to quickly load the

ALPHA register (which doubles as the Input/Output register

when communicating with the loop) with characters other than

A-z or 0-9, only slows the machine down and greatly inflates the

program size. For example, let's say you want the thermal printer

to go into Double wide mode (normally done by setting flag 12) by

sending an "escape sequence”. A quick check on page 13 of the

thermal printer's manual reveals that this is what the printer will

Control The World with HP-IL

expect to see:

ASCII Character sequence: {escape} & k 1 S

| [[
Decimal Equivalents: 27 38 107 49 83

And using XTOAR (append X to Alpha on the Right) with an
Extended I/0 ROM, (or XTOA with the Extended Functions ROM),

this is what it takes to send this sequence:

01 CLA 09 XTOAR

02 27 10 83

03 XTOAR 11 XTOAR

04 38 12 SF 17

05 XTOAR 13 OUTA

06 107 14 "ABCDE"

07 XTOAR 15 CF 17

08 49 16 OUTA

Lines 1-11 put the necessary escape sequence into the ALPHA

register. (Line12, SF17, is needed to suspend the normal

Carriage Return/Line Feed normally sentvia OUTA.) Try

running the program and stopping atline1l. The ALPHA

register will contain what the escape sequence looks like:

GARBAGE! This is one of the reasons these characters cannot be

keyed in the normal way.

Synthetics to the rescue!

Synthetic text lines contain instructions that cannot be keyed

into program memory by conventional means, but will execute

flawlessly once they are there. Their history is a little spectacular,

as they were discovered and nurtured by user groups and their

existence denied (for the first few years, anyway) by HP. Synthetic

The Basics

instructions in general allow any user to access internal registers,
pointers, noises (127 tones, rather than just 10), and display
characters. They allow the 41 to do things that aren't normally
within the machine's realm.

In this book, synthetics will be used for one thing: loading the
ALPHA register quickly. (Okay, two things: In Chapter 4 we need
to suspend all Time Module alarms and synthetic techniques are
the ONLY way to do this.) There are currently two best ways to
load synthetic instructions into the 41. The best is via the
ZENROM, a plug-in accessory produced in Great Britain that

makes entering synthetics as easy as normal instructions. The

second best, and possibly most common, method is by the LB (Load
Bytes) program which is found in the PPC ROM. Both programs
take as input numbers between 0 and 255, and insert them into
program memory. A valid 41 instruction then appears in that
space if a proper number sequence has been entered.

If you are not familiar with synthetics, there is no need to learn
them. Appendix A contains barcode of every HP-41 program listed
in this book, so the entire program, synthetics and all, can be
loaded with the Wand. Additionally, all the necessary program
bytes for creating synthetic instructions are included in each

program listing, for use with the utilities provided by either
ZENROM or the PPC ROM. If you would like to learn more about
synthetics, there are a couple of highly-recommended books on the

subject:

HP-41 Synthetic Programming Made Easy by Keith Jarett

Published by SYNTHETIX, P.O. Box 1080
Berkeley, CA 94701-1080 USA

Synthetic Programming on the HP-41 by Bill C. Wickes
Larken Publications

4517 NW Queens Ave.
Corvallis, OR 97330 USA

HP-41 Instruction Summary

I'm sure many who own both the 41 and the IL module are

Control The World with HP-IL

wondering exactly how these two items are used to talk to items
other than printers and tape drives. Well, just to quench your
thirst for knowledge, here's a table which summarizes all the
instructions available in the 41's IL Module that can be used to

send data to an 8-bit port. (This list does not include the
supplemental instructions provided by the Extended I/O or IL

Development ROM.) The 41 must be in MANIO (Manual I1/0)
mode when these are used, otherwise most commands will try to

route the data to a printer.

OUTPUT

ACA
Sends alpha register contents to the 8-bit port as a string of

ASCII characters.

PRA
Same as ACA but terminates with an End-of-Line indicator.

Some special non-alpha characters, such as decimal 13 and

126, are not transmitted properly.

OUTA
Same as ACA but sends an End-of-Line indicator only when

flag 17 is clear.

ACX
Sends X register contents to the 8-bit port as a string of
ASCII characters using the current display format.

PRX
Same as ACX but terminates with an End-of-Line indicator.

ADV, PRBUF
Sends End-of-Line indicators to the port.

ACCHR ' _
Will send any one character specified by its decimal

equivalent in the X register. For example, to send the Greek
character (mu) or to send the binary word 00001100, put "12"

The Basics

into the X register and ACCHR. Any character code up to
127 can be sent except 10,13, and 126. (See text.)

TRIGGER
On the GPIO or the IL Converter, pulses the GETO (Group
Execute Trigger Out) line low for a brief period.

INPUT

INA
Fills the alpha register with up to 24 ASCII characters from

the 8-bit port. If flag 17 is set, the calculator does not wait for
a CR/LF (Carriage Return/Line Feed) to terminate the
incoming string of characters.

IND
Interprets the next incoming ASCII encoded word as a

number and places it into the X register.

INSTAT
Places the first status word into the X register and sets flags
0-7 accordingly. This is the only way to test the 8-bit port's

MSRQ (Manual Service Request) line.

The HP-71

The HP-71 is a rather deceiving machine. It was originally

designed to be a more powerful replacement for the 41 (it was

originally called the HP-44), and I guess that during the

development process they just got carried away. Contained within

its tiny dimensions are 3 programming languages (BASIC, 20-bit

FORTH, and Assembly), an advanced CALCulations mode, the

world's best HP-IL, and a 512K address space. It's
number-crunching capability is unparalleled for anything of its

size; in fact it adhered to the IEEE floating point math standard

even before it was a standard!
But I am not trying to be a salesman. Blatantly missing from

the 71 is the RPN environment raved about a few pages ago; it has

Control The World with HP-IL

been replaced by a more sophisticated CALCulations mode. (HP
does sell a plug-in ROM that turns the 71 into an incredibly fast 41,

thereby closing the gap somewhat.) The most impressive aspect as
far as this book is concerned is its implementation of HP-IL, which

is the world's best. Offering both high- and low-level control
(something the 41 had a hard time doing), it has the capability to
act as a device as well as controller, pass control to another device
on the loop, wake the 71 up to process important frames, or pass

unimportant ones through while the machine stays off.

If you are a newcomer to HP equipment and especially to HP-IL,
the 71 will make for an easier transition than the 41 because 1) it's
programmable in a very robust implementation of BASIC, a

language that marketing people seem to think is so obvious to use
that everyone is born with the intuitive knowledge of it, and 2)
because of its superb HP-IL interface, it is much easier to

manipulate devices on the loop and have absolute control over
what's going on.

Just as the 41 can't communicate without its IL Module, the 71

must have 2 peripherals to allow it to interface with the projects
described in this book. The first is the IL Module, which is

absolutely mandatory for obvious reasons. Almost as necessary is
the FORTH/Assembler/Debugger ROM, which practically doubles
the power of the 71. Programming in FORTH gives you absolute
control over the machine at 10 times the speed of BASIC, and is an
easy language to learn if you're already familiar with RPN on the

41. But if FORTH isn't for you, then there's an assembler that

allows you to program in assembly language, giving you the

freedom to write your own commands and extend the BASIC or
FORTH languages to fit your own needs. (Assembly language can
also be used to bypass HP-IL and control the outside world at
lightning-fast speeds, as demonstrated in Chapters 9 and 10.) The
Debug utilities put the icing on the cake, allowing you to look inside
the machine's registers and see why that simple little assembly

language program didn't work right. Learning how to get the
most out of this ROM takes time. But then again, the same goes

for any good tool. In short, the 71 without the FORTH/Assembler/

Debugger ROM is like a Jeep without 4-wheel drive.

The Basics

Equally handy are the ROM's line editor, called EDTEXT, and
its KEYBOARD IS lexfile, an assembly language routine that

allows you to hook up an external keyboard to the 71 so it can be
used as comfortably as the big machines. (See Chapter 8 or 11 for
examples of external keyboards using KEYBOARD IS.)

HP-IL Introduction

HP-IL is one of those unique solutions that, like the handheld

units that drive them, fit such a specialized need so perfectly it's

hard to imagine anything that compares to it in terms of speed,

versatility, and especially power consumption. A typical loop setup

is shown in Fig. 1-1.

HP9114B
]

DISK DRIVE

 """""""""""" - PRINTER
CALCULATOR

Figure 1-1
Typical Loop
Configuration

Very basically, all the wires between devices form a loop.

Messages sent out are passed along from one intelligent device to

the other. In this case 'intelligent device' means they each have

Control The World with HP-IL

built-in microprocessors, so they can react to messages in a

meaningful way. Eventually the message reaches the sender,

which then compares the returned message against the one sent to

check for errors. Each device then tries to act on the message it

had just copied, but most discard it because it wasn't meant for

them.
HP-IL's simple physical layout is also responsible for these

attributes:

1. Low power, allowing operation on batteries for extended

periods of time.

2. Versatile, can set up multiple listeners for mass printing or

tape duplication. Imagine 930 LaserJets printing at the same

time! (Imagine the cost!)

3. All devices can be selectively controlled. With normal

addressing, up to 31 devices can be connected to a controller. With

extended addressing, over 900 devices can be accessed!

4. Average data rate is comparable or faster than RS-232.

5. Devices can be separated by as much as 10 meters with special

twisted-pair IL cables.

6. Devices can be powered down and powered up by remote

commands, meaning the entire battery-operated system can

conserve its energy until needed. (Not all devices possess this

capability.)

Getting into the full details of HP-IL is too complicated to cover

completely in this one section. Rather, this chapter offers a

beginner's introduction to HP-IL, encompassing everything you

need to know to understand what goes on in the rest of the book. If

more information is desired, I highly recommend another book:

THE HP-IL SYSTEM: An introductory Guide to the

Hewlett-Packard Interface Loop by Gerry Kane, Steve

Harper, David Ushijima; Osborne/McGraw-Hill, 1982

Let's start off with some basics. The following is a list of some

HP-IL messages that all devices respond to. These are commands

that are invisible to most IL owners; the IL Module's dedicated

microprocessor invisibly generates and decodes them in response

10

The Basics

3

W

I\Y}N
J

§

N

/YAMoro, TAK\E YAMOTO WAS VERY NERVOUS

THIS MEssage

|

AS HIS FIRST DAY A4s

TO GENERAL

|

MESSAGE - BOY FOR THE
¥ 21 fDENTAGON BEGAN...

X \; §\

. 1AD

EVEN THOUGH THIS
RECENT FOREIGN EX-
CHANGE STUDENT HAD
DIFFICULTY READING

ENGLISH, HE couLd
ALWAYS RELY ON HIS

JAPANESE SAVWY TO

INSURE THAT THE
MESSAGE GOT 10
THE RIGHT PLACE.

 WITH THE BILLIONS
OF COPIES I'VE MADE,
AT LEAST ONE WILL
GET TO THE GENERAL/!

Guwp!) | DON'T

EVEN KNow WHO
THE ORIGINAL
ME SSAGE WAS
MEANT FOR ?¢

11

Control The World with HP-IL

to some high-level user command. Don't worry if they look like
Greek to you; some usage examples are coming up shortly.

DCL--Device Clear. All devices on the loop receiving this
message will do something different. A printer might clear its

buffer and eject the current page. A tape drive might just rewind
its tape.

SDC--Selected Device Clear. Same as above, except instead of it

being directed to every device on the loop, this one is executed only
to devices that are currently "listening”.

LAD xx--Listener Address. This tells the xxth device on the loop
to become a "listener”, which means the peripheral or controller is
to grab all subsequent data bytes as they pass around the loop and

treat them as input. ‘"Listener" status stays in effect until a

clearing instruction, such as the "unlisten" (UNL) command, is

sent.

TAD xx-- Talker address. The xxth device gets ready to transmit

data when receiving this command. It is up to the controller to set

up listeners on the loop to receive the transmission. Although you

can have as many listeners on the loop as you want, only one

device can be assigned the role of "talker". TUNT (Untalk) or

assigning a different talker cancels this mode.

SDI--Send Device ID. This instructs the current talker tosend its

name. For example, the HP-IL/GPIO interface would respond by

sending the character sequence "HP82165A", the non-descriptive

name given to it by HP.

SAI--Send Accessory ID. The talker sends a number describing

the type of device it is. Accessory ID's are discussed in detail

shortly.

DDL--Device Dependent Listen. Tells the current listener(s) to

interpret the following data as commands rather than input.

Every device responds to DDL commands differently, depending on

how it was programmed at the factory. You'll be hearing plenty

about this later, believe you me!

DDT--Device Dependent Talker. Same concept as DDL, above,

except this command addresses the current talker. Different

devices will transmit different information depending on their
device class and programming.

12

The Basics

V1L JUST MASS DISTRIBUTE

THESE SDA'S. GENERAL

*# 27 SHouLD KkNow

ENOUGH TO RESPOND. (3 \
/ -~.. | HOPE! o

HERE'S THE LET ME KNow
RESPONSE/ IE YOUR B0SS

>~

4

 X
e =

S”/ —Z

S

NS

THAT MusT
BE MY RESPONSE

ol

13

Control The World with HP-IL

SST--Send Status. Tells the current talker to send at least 1 byte
of status. Different devices, of course, need to report on different

things, which is why every status word is interpreted differently,

depending on the device that sent it.
AAD--Auto Address. This lets all devices on the loop know what

position they're in. This command (also known as "configuring

the loop") is performed every time the controlling calculator is

turned on.

Here is a sample of how these commands are used in a typical

loop session. Soon after the controlling device (such as a

calculator) is turned on, an "auto-address" takes place, which

works like this: The controller sends out the Auto address
command. The first machine on the loop captures the message

and says to itself "Hmmm... Nobody's modified this AAD message

yet... I must be the first device on the loop. Until further notice, I'll
call myself #1." The first device then modifies the AAD message to

show that one device has responded to it so far and sends it onto the
next device in the loop. The next device does precisely the same

thing, calling itself #2 and passing the message along the loop.

When the message finally makes its way back to the sender, the
modified frame will contain the number of devices on the loop.

This information is crucial since loop addressing is done by

position number rather than by name. (NOTE: This is not always

the case, but for this book,it is gospel.)
The user then asks the computer to print a file, to which the

computer responds, "Golly, you told me to print something, and

I'm not even sure there's a printer in the loop!" So then it goes

about the job of asking each device, in order, what its function is.

First, it makes the first device a talker, and then it issues the SAI

(Send Accessory ID) command, to which the mystery device

responds with a number, classifying it as a printer, mass

medium, plotter, 8-bit port, etc. This process is repeated for every

item on the loop until the first printer is found. When this

happens, the computer stops and says, "Well, why didn't you say

you wanted to send it to device #N in the first place?". It then

makes that printer a listener, makes itself a talker, and then starts

14

The Basics

HMM... L woNDER\
WHEN MY RESPONSE
IS COMING BACK ?
I HAVE TO CHECK
IT FOR ERRORS/

UNTIL HE RUNS FULL CIRCLE

=" "‘
. Cre).
SutlN U
=y ’-—

N DS -
=Y \

\ (=
N KR RIAN ®

Y R SRk
’\

ALRIG
RESPONSE ur/

A JOB WELL
DONE! A

15

Control The World with HP-IL

sending data. After the last byte is transferred, the controlling
computer de-assigns the talker (UNT) and listener (UNL) status’
and returns to the tedious task of waiting for the user to do
something.

That was a brief going-over. Now, on to some badly-needed
explanations.

After each device has been assigned a number, it is sometimes

useful to know the function of each device, so information destined

for a printer can be routed there (as in the previous example).
Most HP-IL devices have 2 ways of conveying this information:

Device ID's (such as "HP82166", which is the name of the IL

Converter), and Accessory ID's (such as 64, which classifies it as

an interface type device). Having two methods at your disposal can

be advantageous, as the following example will show:

25-Pin Connector—\

Y 34-Pin Connector

IL
C
o
n
v
e
r
t
e
r

 Figure 1-2
A Situation
where Accessory
IDs will not uniquely
identify the device.

16

The Basics

As will be fully explained in a couple of sections, the two devices on

the loop in Fig. 1-2 are almost identical. Because they are slightly
different, they have two different names and transmit two different

ID's. Because they perform the same function, they will send the
same accessory ID. We can take advantage of the sameness and
the differences by tailoring their use to the situation.

With the 41 as a controller, as shown in Fig. 1-2, we wish to send

information to the GPIO but not the IL Converter. Two steps are

needed in order to talk to that device: first, find its loop position,

and second, SELECT it. (SELECTing it on the 41 means that all

future communications will go there by default.) Device ID's are

used to insure talking to the proper device. Here is the code needed

for the 41 to accomplish this:

01 MANIO The printer is no longer the default device.
(Not necessary in this case, but it's a sound

programming technique that helps avoid

confusion later.)

02 "HP82165" Device ID for the 82165A GPIO 8-bit port,
loaded into the ALPHA register.

03 FINDID Puts the device's loop position into the X

register.

04 SELECT Makes it the primary device. (All

subsequent data gets routed to there.)

05 "ABCDEFG" A test string.

06 SF17 Disables automatic CR/LF (Carriage

Return/Line Feed) on output.

07 OUTA Send the ALPHA register to the selected

device.

or for the 71:

OUTPUT :HP82165; "ABCDEFG"

17

Control The World with HP-IL

Sometimes situations come up (like in this book, for example)
when you don't care whether an IL Converter or a GPIO will be

connected to the loop, but you do want to the program to work
without modification in either case. For this, we can use

Accessory ID's, which were created specifically for this purpose.

Accessory ID's just identify the type of device without worrying

about specifics, such as whether or not the mass storage device is
the cassette type or the floppy disk variety. The Accessory ID's fall

into the following categories as defined by Hewlett Packard:

DEVICE CLASS ACCESSORY ID RANGE

Controllers 0-15

Mass Storage Devices 16-31

Printers 32-47

Displays 48-63

Interfaces 64-79

Instruments 80-95

Graphics Devices 96-111

Undefined 112-223

EPROM Programmers 224

So, if your program wanted to find an interface device, it would

(ideally) search for an Accessory ID anywhere between 64 and 79.

It will be seen shortly, though, that in our case only the number 64

need be sought after.
Using Accessory ID's, the following program will work with

either of the configurations in Fig. 1-3 (next page):

01 MANIO Again, good programming

practice.

02 64 Accessory ID for "interface

class" device.

03 FINDAID Find Accessory ID, from the

Extended I/0 ROM.

04 SELECT Make it the primary device.

05 "ABCDEFG"

06 SF 17

07 OUTA

18

The Basics

'lllllllll!llll“

C
o
n
&
%
n
e
r

"GPIO"

Moo IPR

||

Figure 1-3
2 Configurations
that respond to
"64 FINDAID'

or for the 71:

PRINTER IS :INTRFCE Treats the first

interface-class device

as a printer.

or

OUTPUT :INTRFCE; "BLAH, BLAH, BLA-BLAH!"

Sends string to first

interface-class device.

19

Control The World with HP-IL

Another example: When the 71's "PRINTER IS :PRINTER"
command is executed, it just looks for the first device on the loop
whose Accessory ID (falling between 32 and 47) classifies it as a

printer, and then routes all future PRINT functions to that device.
It shouldn't care whether there's a thermal or a ThinkJet (tm)

printer attached.

When information is to be transferred from one device to

another, the controller must first assign the appropriate devices to

be either talkers or listeners and then start the data going. Most of

the time this activity is invisible to the user, but if we take the time

to understand what's going on we can do some pretty impressive

things. For example, let's look at the common case of the HP71

sending data to a printer, and then we'll perform some magic and

have it drive 30 printers at once!

Here are the steps involved in "outputting” to a printer:

1) Identify the first printer on the loop using Accessory IDs.

(Look for an Accessory ID of 32.)

2) Make the printer a Listener.

3) Make the 71 a Talker.

| AM A PRINTER-
CLASS DEVICE...

20

The Basics

Thinkjet 1

Send Listen 1,23 [mummy

Figure 1-4
Multiple Listeners

4) Send the file as a bunch of data bytes.

5) Remove the 71 from Talker status (the UNTalk command).

6) Remove the printer from listener status (the UNListen

command).

All the above are automatically performed for you every time

anything is printed using the standard commands. But if you
wrote your own program, you could set up more than one listener
on the loop and transmit the same information.

The following 71 program does just that.

05 RESET HPIL !

!

10 PRINTER IS :LOOP !
!

!

20 SEND UNT UNL LISTEN 1,

30 PLIST ANYFILE

!

!

!

!

40 SEND UNT UNL !
!

Resets the machine to a known

condition.

All future PRINT functions go

only to user-assigned

listeners.

2,3 MTA ! Assigns the first 3

devices on the loop as

listeners and the 71 as a

talker (MTA)

! Print any old file.

! Undoes Talker and Listener

status.

21

Control The World with HP-IL

Here's another wonderful possibility: Take 20 71's and connect
them all together in a loop. Throw in some other peripherals in
random places on the loop if you desire. By turning only one of the
71s on and running the program below, you can have it turn all the
other devices on, assign only the 7ls as listeners, transfer a
program to them, and shut everything offt Here's the program

that does this:

> e >

These are
C) This is .
— the Receivers —»

the Sender °)

> T TR

DISK DRIVE

10 INPUT "PROGRAM NAME? "; P$! P$ is the name of

! the program you want to send.

20 CONTROL ON @ OPTION BASE 1

30 DIM A(32) ! A is the array which will

! contain the loop position of

! all the 71s.

40 FOR N=1 TO 31

50 A (N)=DEVADDR ("HP71 ("&STRS (N)&")") ! Find the Nth

! 71 on the loop and store its

! loop position in A(N).

60 IF A(N)=-1 THEN 80 ! Branch here if there are no

! more 71s.

70 NEXT N

22

The Basics

80 REMOTE :LOOP ! Remote Enable all devices.

90 FOR X=1 TO N-1 ! For each 71 on the loop

100 SEND LISTEN A (X) ! Make it a listener

110 NEXT X

120 SEND MTA ! Make the 71 a talker.

130 OUTPUT :LOOP; "CONTROL OFF" ! The first remote

! command to be sent.

140 OUTPUT :LOOP; "BEEP @ COPY ";P$;":LOOP @ BYE"

! Line 140 sends the remote

! command to copy the specified

! program from the loop.

150 COPY P$ TO :LOOP ! Copies the program to all the

! current listeners.
1160 BYE Shut the sending machine off.

[Note for experts: Both loops in the above program could have been
eliminated by sending the Auto Address Unconfigure command
and doing a LAD 3 (the 71's default address). Keep in mind,

though, this is supposed to be for educational purposes, and

special cases like this only serve to confuse beginners.] [Note for

beginners: See what I mean?]

41 vs. 71 Implementations

Well, that's a brief introduction. Throughout the examples you
many have noticed that, even though the messages generated

around the loop were the same, the steps required to generate

them on each machine were quite different. The 41's instructions

are much closer to what's actually sent around the loop; whereas

the 71's instructions are of a very high level in order to shieldthe

average user from unnecessary complexity.

Unlike the 41, however, the 71 has the capability to go from

high-level, user-friendly mode to low-level, user-has-total-control

mode. The 41 needs outside help to do this, and HP has provided it

in the form of one of two plug-in ROMs: the IL Development ROM

and the Extended I/O ROM.

The IL Development ROM (sometimes affectionately known as

the DevIL ROM) is the more powerful of the two ROMs, and

therefore a little more difficult to use. In addition to allowing you

23

Control The World with HP-IL

to generate ANY type of HP-IL message, it also offers a SCOPE
mode, which lets you put your 41 in the loop and will display all the
low-level IL messages being passed around, giving the user a
"window" to what's being sent from machine to machine. You
also have the ability to store these frames away for future analysis,

or capture them and output something completely different. For
development purposes, this is invaluable. In addition, this ROM
also provides very handy routines for base conversion, covering

Hex (base 16), Octal (base 8), and Binary (base 2) words up to 32 bits

wide.
Although not quite as powerful, the Extended /O ROM is

nevertheless the one that will be recommended for all but one of the
41-based projects described in future chapters. This is because in
the never-ending tradeoff struggle between absolute control and

user friendliness, this one wins out on friendliness (and in some

cases speed). (Chapter 4 is the only example that requires a

feature in the Development ROM.)

The Extended /O ROM generally requires fewer commands

than the DevIL ROM when doing loop configuration or sending out

a finite number of characters, and provides a means of accepting a

byte value of "0" as the first character in a string, something the 41

doesn't usually allow. It also uses the ALPHA register as a

24-character input/output buffer, whereas the DevIL ROM uses a

separate memory buffer that must be read and written to with

greater difficulty.
It is unfortunate that one must make a choice between the two

ROMs. Even those of us who are foolish enough to buy both have

difficulty using them simultaneously since some of their duplicate

function names perform their tasks slightly differently.

Well, that should be enough information to get started. The

next section gives the basics of the hardware aspects ofinterfacing.

Then, Chapter 2 will offer some simple examples so we can put all

this information to use immediately.

Theory of I/O: Triacs, Opto-Isolators, Gates

This section will help to answer the age-old question, "How do

you actually get a computer to interact with the outside world?". It

The Basics

certainly is not an obvious thing even to those who possess degrees

in computer science, yet it is no less important a topic than

Fast-Fourier Transforms or Runge-Kutta root finders. (For those

of you who just said "Huh?": Don't worry; these are subjects best

saved for another book.)
Surely everyone can associate with the analogy of a light switch:

When someone or something throws the switch, two pieces of
metal come into contact and complete a circuit. Relays were the

offshoot of this; they added an electromagnet to perform the
mechanical action of "throwing the switch". Relays, however,

have several shortcomings: 1) They consume a lot of power (and
therefore are dangerous to drive directly from a tiny computer
circuit), 2) their contacts should be cleaned on a regular basis, and

3) they are slow. This last shortcoming will prove to be prohibitive

when we discuss light dimmers in a later chapter.

The Opto Isolator

Consider a better alternative to a relay: the Optical Isolator.

(Also called an Opto Coupler.) Comprised of an LED (Light
Emitting Diode) and a photosensitive transistor, the Opto Isolator

comes in an innocent 6-pin DIP package and is perfectly suited for

turning small things in the outside world on and off by computer

control.

100 Ohms
1 To "Remote”

“W— / 6 Input

}/ \
2

5

 4 |
- Subminiature RECORDER

Opto-Isolator Phono

ECG 3048 Jack

Figure 1-5
Turning on
a tape recorder

25

Control The World with HP-IL

As an example, consider Fig. 1-5. Here, we have an Opto-
Isolator connected to the REMote input of a tape recorder, an input
originally designed for the on/off switch on many common

microphones to turn the recorder off or on depending on how many
mental blocks the dictator has. Here the Opto Isolator is behaving
like the microphone's switch: it connects/disconnects the REMote

input's contacts.

The LED, firmly encased inside the Opto Isolator, works like a

light bulb: apply 2.5 to 4.5 volts to it and it will light up. In this
case, when the LED (which you cannot see) lights up it makes the

light-sensitive transistor conduct electricity, in effect acting like a

switch and starting the tape recorder. (At this point, don't ask

how to get the computer to make the proper voltage appear on the

LED's input lead-- we'll cover that shortly.)

The Triac

Opto isolators are not the ultimate in interface tools. Despite

their unparalleled ease of use, they can only handle small loads

like tape recorders, cameras, buzzers, LEDs, and the like. This

makes it a good time to introduce the TRIAC.
Triacs were specifically designed to allow computers to control

alternating current devices consuming up to about 650 watts.

Figure 1-6 (next page) shows how a triac can be hooked up to solve

the infamous "how do you turn on a light bulb" problem. (I might
mention that triacs are made for AC loads only; this circuit will

not work if the bulb were hooked up to a 110V DC battery. (Actually

it would; but when you remove the input signal from the Opto
Isolator the bulb will not turn off.))

Triacs should only be used on resistive loads (such as light

bulbs, clocks, and toasters) and not on reactive or inductive loads

(such as blenders, vacuum cleaners, or generally anything with a

motor).

As with all projects involving AC voltages, certain precautions

must be taken to insure safety. Never touch the triac during

operation; the large tab used for mounting the heat sink is

electrically connected to pin 2, which means touching it is the

26

The Basics

 .
3010 ;< |_

Triac Driver -

Figure 1-6
How to Drive
an AC Light
Bulb.

equivalent of sticking your finger into the wall outlet.

One must also be careful of excess heat dissipation from triacs

when they are driving heavy loads. Unchecked heat buildup in

these situations has been known to cause one or more parts to

explode. Heat sinks (devices that help radiate the heat to the air)

come in two varieties: the "clip-on" type for relatively light loads

such as low-wattage light bulbs, and "monsters”, which should be

employed as shown in Fig. 1-7 (next page). Note the use of both a

Mylar thermal insulator and silicon grease between the triac and

the large heat sink! If not for the insulator, the heat sink will be
attached to 110V and it's easier to accidentally electrocute oneself.

Real Heavy

For incredibly large applications, (like turning Las Vegas on

and off by computer control), the only way to go is to have the Opto

Isolator drive a relay (Fig. 1-8, next page). Relays are kind of like

vacuum tubes, in that for the most demanding applications

nothing else will suffice. For control applications, they should be

driven with an opto-isolator, just like the triacs. Never ever

connect a heavy duty relay without an opto isolator or transistor
driving it!

27

Control The World with HP-IL

Anodized Aluminum

Heat Sink

Mylar Insulator Nylon Bolt
Nvion S . coated with
ylon Screw Triac Heat Sink Compound

Figure 1-7
The proper way
to mount a Triac.

1 +28v

1 Meg®

Latch __| NPN
Output Type

—1 17V 28 Volt Relay
: E : (Coil between

\ + 100 and 600Q)
—ee N

5v =

ground 28v
ground

Figure 1-8
Controlling
Large Loads

28

The Basics

To be sure, there are many other methods of computer I/O. The

ones mentioned here are the ones that will be used from now on, so

these simple interfaces will be recognizable in future chapters.

What's an 8-bit port?

You've seen larger computers with all those connectors in the
back that allow it to communicate with the outside world. The
most common type is a serial (RS-232) port, a 3-wire (most of the
time) scheme which connects your machine to common

peripherals such as modems, printers, etc. An HP-IL computer

can be hooked up to these peripherals, too. Using a box called
(appropriately enough) the HP-IL to RS-232 converter, you can
attach more than 900 serial ports onto one machine! (Who says the
small machines can't blow the big ones away?) RS-232is covered

more thoroughly in Chapter 11.
The other type of computer port common to most machines is

called a parallel port, and gets its name from the way words are

sent out. Many popular computer architectures represent data

using 8-digit binary numbers, and therefore sending them out to

the outside world is accomplished with 8 wires. (Refer to Fig. 1-9.)

85 (decimal) = 01010101

=

5 volts DAO

0 volts——— DA1
5 volts—— —DA2

0 volts—— DAS3

5 volts DA4
0 volts— DA5
5 volts DAG

0 volts —————— DA7

Figure 1-9
How One Byte
Translates to
Eight Wires.

29

Control The World with HP-IL

There are three devices which attach to the loop and provide the

function of an 8-bit port. All of them feature software selectable
options, a 32 word data buffer, and handshaking lines to allow it to

talk to almost any other machine. But before talking about their

features and differences, let's go over some of the basics so the

above sentence will seem less cryptic.

One of the most crucial aspects of transmitting data is making
sure the destination machine is ready to accept it. For example,

printers are notorious for printing information about a billion

times slower than they receive it. How does a computer handle it?

Well, in the olden days, it would just wait. Today, the printer
might suck up the information as fast as the computer sends it

and store it in its own memory, then print it at its own sweet pace.

Either way, the machines transfer the information via an accepted

social pattern.

Here is what a typical conversation between a computer and

printer looks like while transferring 1 byte of data:

COMPUTER: Are you ready to receive some

information?

PRINTER: Yes, I am.

COMPUTER: Okay, here it is: "Blah, blah,

bla-blah!" Did you get that?

PRINTER: Yes, I did.

(This offers some insight as to why computers are so boring.)

There are three extra wires (added to the 8 we already have)
whose sole purpose in life is to allow the above conversation to take

place:

RDYI (Ready Data In): This line "goes high" (measures 5v)when

the printer says "Yes, I am", and tells the 8-bit port that it is OK to

send the next piece of data.

DAVO (DAta Valid Out): This line goes high each time the 8-bit
port says "Okay, here it is:". It lets the printer know that whatever

is appearing on the 8 data lines is valid, so the printer had better

grab it now before it goes away.

DACI (Data ACcepted In): This wire goes high when the printer

30

The Basics

tells the 8-bit port "Yes, I did". (Transmitting information to a
computer can be kind of like writing a book: You never really know

if your information was received properly. This extra wire fixes
that situation; it reassures the computer that its information is

being accepted and to please continue, for it really is interesting!)

These three wires are used only for data transfers from the 8-bit
port to the printer. But some peripherals, such as telephone
modems, must transfer information in both directions, making it
necessary for the 8-bit port to possess three more lines of opposite

function:

RDYO (ReaDY Out): Tells the modem that the 8-bit port is now

ready to receive information.

DAVI (DAta Valid In): The modem sets this line high to tell the

8-bit port that the data it sees on the 8 wires is valid; better grab it
now before it goes away.

DACO (Data ACcepted Out): Tells the modem that the last datum
was received; thank you very much.

(Yes, there are reasons why the 8-bit port might not be ready to

receive information all the time. These will be covered in a few

pages.)

All three of the 8-bit ports share some impressive common

attributes:

1) You can, by software commands, tell the port how many of its

16 wires to use for data transfer: You can have 8 wires that carry

data in both directions; you can have 8 wires carrying data in each

direction (16 total); or you can have all 16 wires carry a 16-bit word

in both directions.

2) You can, by software commands, specify positive or negative

logic. Positive logic means a wire measures 5 volts when the

computer wants to say "Yes"; negative logic means the same wire

measures 0 volts when the computer wants to say "Yes". The 8/16

31

Control The World with HP-IL

data lines and the six handshake lines can be specified separately
so you can have positive data logic and negative handshake logic if
you wanted to. (This is, by the way, the default configuration.)

3) You can have it automatically affix a Carriage Return/Line
feed (CR/LF) (or ANY OTHER character sequence) at the end of
every line. You can also have CR/LFs automatically extracted
from the input and replaced with the termination characters of
your choice in case you're talking to some weird equipment that

expects different line-termination etiquette.

4) You can specify how much handshaking is to occur. This

ranges from full handshaking as just described, to valid/accept

handshaking where you assume the other side is always ready to

receive, to none at all (kind of like mailing a letter and not knowing

if the person received it or even if he/she were still alive).

5) You can specify how long the data is to appear on the data

lines, from 5 to 250 milliseconds.

6) The unit possesses a 32 register transfer buffer that

temporarily holds only data in case one computer receives more

slowly than the other transmits. It's nota lot, but for slow

machines like the 41 it can make a big difference!

(WARNING! This is not a full duplex buffer, meaning it cannot
accommodate both machines trying to send at the same time! The

buffer will only hold onto information going in one direction, and

information travelling the other way will be lost!)

7) MSRQ (Manual Service ReQuest) and GETO (Group Execute

Trigger Out) wires that can provide two additional bits of I1/0

(Input/Output) for unusual interface situations. Future chapters

will explain how each computer interacts with these wires.

Most of these incredibly versatile features are accessible only via

DDL and DDT (Device Dependent Listen / Device Dependent Talk)

commands. Their use is not obvious and certainly not well

documented in average HP literature, and an off-the-shelf 41 can't

32

The Basics

even do it without one of the two afterthought ROMs described a
couple of sections ago. So, an example of usage is in order.

Setting up the GPIO's internal control registers is easiest on the

71. Let's say we want to establish the following configuration: (See
Fig. 1-10 for GPIO's control register map):

First word (R00): Respond to service requests when one of three
conditions is met: Manual Service Request line is low, the buffer is

full, or there's data ready for HP-IL.

To specify these conditions, the total of bits for the first word
should equal: 64+8+2 = 74.

Second word (R01): Send an End-of-Data frame if the 32 register

buffer is empty.

Total of bits for the second word: 16.

Third word (R02): Full handshake, positive data logic, negative

handshake logic, 100 microsecond DAV O duration, 8-bit

bidirectional, DAVO timeout disabled.

Total of bits for third word: 128+64+0+16+0+0+0+0 = 208.

R03-R18: Default values will suffice.

Here's a program for the 71 that will perform the above setup:

5 A = DEVADDR("%64")

10 SEND UNT UNL MTA LISTEN A DDL O DATA 74,16,208 UNT

UNL

UNT and UNL just clear all devices from whatever status they

might have been in prior to line 10. The next two words assign

talker and listener status: MTA means My Talk Address,
meaning the 71 is both a controller and a talker. LISTEN A

assigns listener status to the device with an accessory ID = 64, as

defined in line 5. (We also could have used its full name, which is

"HP82166A", but for reasons described previously the Accessory ID
is more useful.) DDL 0 is the first command sent after the talker

33

Control The World with HP-II.

ROO—Service Request Conditions (Default 01000000, Value = 64)

BIT7 BIT6 BITS { BIT4 BIT3 BIT2 BIT1 BITO 4‘

Status Service ManualService f All Status Ser- | Buffer Busy Buffer Full No GPIQ Data Ready For Ready For HP-IL ‘

Requests Request vice Requests ‘ Handshake HP-IL Data ;

|
0 = Disable 0 = Disable 0 = Disable 1‘ 0 = Disable 0 = Disable 0 = Disable 0 = Disable 0 = Disable
1 = Enable 1 = Enable 1 = Enable | 1 =Enable 1 = Enable 1 = Enable 1 =Enable 1 =Enable

Value =128 Value = 64 Value = 32 | Value = 16 Value =8 1 Value = 4 Value =2 Value =1

RO1—Control and Status of Handshake (Default 530000000, Value = 0)

BIT7 | BITE BITS | BIT4] BIT3 BIT2 I BIT1 lsmo |

DACO and ROYO! Nat Used Set DACO ; Buffer Empty I Set ROYO DACIStatus 1 Not Used E ROY! Status]
Control | End-of-Data | !| i! | !
0 = Disable 0 = False 0 = Disable 0 = False 0 =False l 0 =Faise i
1 = Enable 1=True 1 = Enable i 1=Tre 11 =True | 1=True i

Value = 128 Value = 64 | Value =32 " Value =16 | value=8 | Value = 4 | Value=2 | Value =1 l

R02—Handshake and Data Formats (Default 11011000, Value = 216)

BIT7 [8rrs BITS [aima | B3 lBm2 | BIT1 I !
Handshake Options Data Logic | Handshake ’ DAVO Time Unit Data Format ‘ Data Bus Setup " pavo Timeout |

| Logic ! | : ! |00 = Strobed | i i | i
01 = Ready/Valid 0 = Positive ; 0 = Positive =100 us | 0=8-bit | 0=Bidirectional 0 = Disable
10 = Valid/Accepted i i | ! !
11 =Full i 1 = Negative 1 = Negative 1=5us "1 =16bit 1=Unidirectional

1

= Enable

Value = 128 Value = 64 | Value =32 ! Value = 16 ‘ Value = 8 Value =4 Value = 2 Value =1

RO3—DAVO Pulse Width Number (Default 00000101, Value = 5)

- T
BIT7 BIT6 1BITS BIT 4 'BIT3 BIT1 iBIT 0IBIT2

1

| Total value specifies number of DAVO time units added to basic 25-us DAVO pulse width, except that a value of zero specifies
256 units. (DAVO pulse width is limited to 25 us plus specified number of time units—40 #s minimum.)

: Value = 128

34

Value = 64 IVaIue =32
1

J\/alue =16 ! Value = 8
1

I
iValue =4

|
iVaIue =2

|
IValue =1
i

Figure 1-10

GPIO Register
Control Map

The Basics

and listener roles have been assigned. An 8-bit port interprets a

DDL 0 as meaning "Don't send the following bytes to the outside

world. Rather, interpret them as input to the control registers.”

Finally, UNT and UNL clean things up for the next data

transmissions.

For the 41 to perform the identical task, either the HP-IL

Development ROM or the Extended /O ROM must be plugged into

any port. Using the latter ROM as an example,

01 LBL "TEST" 12 64

02 CLA 13 FINDAID

03 68 14 SELECT

04 XTOAR 15 LAD

05 74 16 0

06 XTOAR 17 DDL

07 16 18 3

08 XTOAR 19 OUTAN

09 208 20 UNL

10 XTOAR 21 ADRON

11 ADROFF 22 END

Lines 2 through 10 (about half the program) load the bytes

destined for the control registers into the ALPHA register. Notice

that there is an extra character (decimal 68), which is needed

because the OUTAN command at line 19 insists on a leading

dummy character in ALPHA. Line 11, ADROFF (Address Off), is

a strange command needed to bypass some automatic feature in

the Extended I/0 ROM. 64, FINDAID, and SELECT set up as the

primary device anything that has an accessory ID = 64 (which

classifies is as an interface device). LAD makes it a listener; and

0, DDL prepares the 8-bit port for the forthcoming data. 3 OUTAN

puts out 3 bytes ofALPHA to the listeners, and then UNL removes

the listener status. Finally, ADRON (Address On) nullifies

ADROFF (Address Off).

We could shorten the 41's program length and execution time by

replacing lines 2-10 with only one synthetic text line: 244, 68, 74, 16,

208. All this helps to prove a simple point: Low-level

35

Control The World with HP-IL

loop control is easier and faster on the 71.

Once one of the above programs have been run, the 8-bit port
retains the parameters until the power is removed or some other

reset occurs. Subsequent data transfers are then accomplished by

SENDing individual strings, or pretending the device is actually a

printer and sending it characters. For example, to output

characters on the 41:

MANIO

[position of 8-bit port in loop] SELECT

[ALPHA] ABCDE [ALPHA]

ACA

and, of course, for the 71:

OUTPUT :GPIO; "ABCDE"

Now, on to the individual 8-bit-port descriptions.

The Individual 8-bit Port Descriptions

The first and the best is the HP82166A IL Converter,

manufactured by HP. It featured taps from the HP-IL
transformers so you could design your own power up/power down

circuitry to turn on when a message passed through the loop or

turn off when a special command was given. It possessed a chip

select input (haven't quite figured out why I'd need it since

handshake lines already exist), and ran forever on 4 AA batteries

(and a 5v regulator, of course!). Notice the past tense in this

paragraph; as this compact and power-mising unit is no longer

available from Hewlett Packard.
All is not lost, however. All of the individual components that

comprised the IL Converter EXCEPT THE CIRCUIT BOARD are

available from speciality shops, so for the couple of projects that

require the Converter's unique properties you can still wire one

36

The Basics

together yourself.
(You see, the reason HP's IL Converter was so small is because

they used a custom 4-layer printed circuit board, and when the
initial production run was exhausted, HP decided to come out with
the more expensive (but less versatile, see below) 82165A
HP-IL/GPIO interface, and stopped making the 4-layer boards.
Tooling costs for such boards are prohibitive for any volume less
than 10,000, which is why no third party hasn't jumped in and
designed a suitable replacement board.)

The third option, the HP82165A HP-IL/GPIO interface ("GPIO"
is a suitable nickname), is still available from HP as of this writing
and performs the same function as the IL Converter. HP has
added a power supply (but still expects the other circuitry to have
one of its own) and has taken away four interface lines. Other
drawbacks are A) your battery-powered computer and your
battery-powered circuitry must now be tied to an AC outlet if they
are to talk to each other, B) power-conserving features (the ability

of the circuitry to respond to the powerup/powerdown commands)

cannot be implemented, and C) it costs roughly twice as much as
it's predecessor.

I have found the GPIO extremely valuable for one task:
prototyping. Its built-in power supply (you have to open the unit in

order to "tap” into it) gives you one less thing to worry about when

Photo #1 A visual comparison of the two 8-bit ports.

37

Control The World with HP-IL

25 Pin
AC Transforner Connector
Input \

TTTTTTTTT

 fl'l
[3

30

/DC]
5V Power Tap

Efi
fil

 Reset - (-):_ :-:-] Ve

Power & T/R LEDs IL Connrectors

Figure 1-11
Power Tap inside the
GPIO

throwing circuits together and trying them out. Its shape invites

the installation of a proto-board on top of it. Its POWER and T/R

(Transmit/Receive) LEDs offer just a little visual confirmation of

the transference of data.
To tap into the GPIO's power supply, it is necessary to void the

warranty and open the case. (Unlike HP's calculators, this is an

easy thing to do.) This is done by removing the two Phillips-head

screws on the case's bottom. Then just solder a wire onto the 330

microfarad capacitor as shown in Fig. 1-11 This becomes the +5v

wire to power your outside circuitry; the GND (0Ov) wire is already

available at pin 21 of the 25-pin connector.

I should emphasize that, despite the stated differences and

drawbacks, any of the 8-bit ports described above can be used to
construct all the forthcoming projects (Well, almost all; the

38

The Basics

telephone answering machine in Chapter 7 requires the extra
PWRDN interface line).

Now that the differences have been all spelled out, I will hence
forth refer to any of the generic 8-bit ports mentioned thus far

simply as "GPIO". This should make life easier for both of us.

39

40

Control The World with HP-IL

This page intentionally left blank.

(Yet another in a series of self-referential jokes.)

Chapter Two

MORE SIMPLE EXAMPLES

"Nothing is so simple that somebody doesn't know it".

--George Friedman

Let's finally get to some immediate gratification. The circuit

shown on the next page is the hardware needed to have the

computer visually count in binary. It is a simple experiment, yet

reveals a great deal about how the GPIO (meaning ANY of the 3

8-bit ports described in the last chapter) works.
Figure 2-1 shows the circuitry. In addition to the 8 LEDs (Light

Emitting Diodes) needed for the counting, only 2 other components

are necessary: a latch, and 1/6 of a 4069 hex inverter.

The latch is a device that holds onto the data it sees until the
next byte comes along. Compare this with the output of a GPIO,
whose data appears on the data lines for a mere 65 ms. We know

when the data appears because the DAVO line pulses low at that

instant.

The hex inverter is shown symbolically as a triangle with a

circle on its output. When you consider that computers represent

signals as either being 0 or 1, and that a "0" is less than 2v and a

"1" is about 5v, an inverter simply outputs the opposite of what it

was fed. One of the most common uses for inverters is as "glue" to

make different components work together. In this example, it is

making a negative signal coming from the GPIO suitable for the

latch, which expects a positive signal.

The particular latch mentioned, the 74C373, has the 8 LEDs of

Fig. 2-1 connected directly to its output. This Method of driving

41

Control The World with HP-IL

+5V

Vce

Vei

DAO

DA1

DA2

DAS3

DA4

DAS

DA6

DA7

DA

o0

o1
D2 02
D3 74C373

Latch 03

F
R
O
M
G
P
I
O

RDYI

DACI

GND

Figure 2-1
Data Bus
Output Monitor 4069

- Hex Inverter

external components (including Opto-Isolators) should not be used

with anything but CMOS integrated circuits!! In addition to their

many other attributes, CMOS circuits have the ability to provide up
to 4 mA of current to outside devices that need them, like LEDs.

42

More Simple Examples

Other popular logic families such as TTL or LS can't supply that
much current; and placing such a demand on them could damage

the IC! CMOS-type circuits can be identified by a "C" in their part
number, or a part number of the form 4XXX.

Building the Circuit

If this is your first encounter with either the GPIO or electronic

circuits in general, I offer a few tips. Often the most difficult

aspect of assembling a circuit is trying to isolate what went wrong

when it doesn't work. (And it never works on the first try!)

Generally, all the hardware can be broken down into 2 commonly

troublesome categories: the GPIO's wiring, and the

hand-assembled circuitry.
The GPIO, and specifically the IL Converter, make many

connections to the outside world via the devices' 25-pin (82165A

GPIO) or 34-pin (82166A IL Converter) connectors. One miswired

handshake line or one forgotten ground will make the whole

system inoperable, and generate all sorts of errors on the

controlling computer.

The most common error occurs while trying to hook up the IL

Converter, as its dense 34-pin connector is both hard to count and

its first pin is not clearly labeled. Even worse, most people use the

standard 34-pin ribbon cables (used for common computer

applications) to interface the converter. This often requires cutting

the cable in half, separating and stripping each conductor, and

carefully counting from the end every wire that is to be connected.

This situation, although unavoidable, invites all sorts of wiring

errors.
Therefore, when constructing a project, an important

intermediate step is to power-up only the 8-bit port and see if it

responds to commands like STATUS or INSTAT. If you get a

LOOP BROKEN error message, remove all power immediately and

check for miswiring. This simple step is guaranteed to save you

much frustration during construction and troubleshooting of

projects.

Also recommended for troubleshooting is something called a

Digital Logic Probe, which is used to visually show whether an IC

43

Control The World with HP-IL

pinisata "1" or a "0" state. If you're on a budget, an LED
connected between the pin in question and Ground will show the
same thing; but the logic probe is designed to interfere with the
circuit as little as possible so as to not influence its behavior.

After the circuit in Figure 2-1 is hooked up and working, run
the driver program on the 41 (In this example, make sure the
GPIO is the only device on the loop):

01 LBL "COUNT" 07 LBL 01

02 MANIO 08 RCL 01

03 SF 17 09 ACCHR

04 SF 21 10 ISG 01

05 .127 11 GTO 01

06 STO 01 12 GTO "COUNT"

Well, the program certainly looked simple enough! All it is

supposed to do is count from 0 to 127 in binary, and send each

number to the loop via the ACCHR (ACcumulate CHaRacter)
command. However, that didn't quite happen. Notice that the

numbers 10, 13, and 126 appeared on the LEDs as 0, 253, and 28,

respectively. Also notice that we couldn't have counted up to 255

even if we wanted to. (We do have 8 LEDs, after all!) Why?

This traces back to what the IL Module was originally designed

to do: communicate in ASCII characters. In the ASCII definition,

character codes 10 and 13 represent Carriage Return and Line
Feed. ACCHR's function is to accumulate characters, so it decides

to change codes 10 and 13 to something else. The reason 126
doesn't translate correctly is a little less obvious: 126 on the 41

defines the "Sigma" character, which is represented on the 82162

printer as 28. The 41 is simply translating one non-standard
character so it will show up on the printer correctly.

The way to correctly count to 255 is to change line 5 to .255 and

replace line 9 (ACCHR) with three lines: CLA, XTOAR, and

OUTA. XTOAR (X to A Right) is the same as XTOA in the

Extended Functions Module: it takes the decimal in X and stores it

as a character in ALPHA. Throughout this book, these two

More Simple Examples

commands are interchangeable.
From watching the unit count, one can conclude that it is

possible to turn on any desired LED or combination of LEDs just by

sending the proper number via ACCHR. For example, to turn the

first one on, just press 1 ACCHR. To turn on every other LED
(positions 2, 4, 6, and 8), just press 170 ACCHR. (Where did the 170

came from? See below.)

10101010 = 170 (base 10)

5 volts——|

0 volts

 1%

S
5 volts

D 0 volts

5 volts

D 0 volts

{3 5 volts

0 volts

Some interesting things to note about flags 17 and 21. OUTA
sends out the entire contents of the alpha register and terminates
it with a CR/LF if flag 17 is clear. If you don't believe me, try

clearing flag 17 and run the program from line 4. Three

characters are now sent in succession instead of one, and the last

one (line feed, =1010 in binary) remains showing.

Two things can be concluded here: 1) For control applications, a

CR/LF is most undesirable; therefore always set flag 17 or use

ACA instead of OUTA. 2) If a control program contains an
AVIEW (mine always do), clear flag 21 before each AVIEW,

otherwise your message will be "outputted"” onto the loop. (There I

go, verbing nouns again!) Be sure to immediately SF 21 after an

AVIEW, otherwise future GPIO commands will be ignored.

A NOTE TO 71 OWNERS: You should be glad to know that this

short program does the same thing as the 41 version above, except
it doesn't require 5 paragraphs of discussion:

5 ENDLINE ""

10 FOR X=1 TO 255

45

Control The World with HP-IL

20 OUTPUT ":GPIO"™; CHRS (X)

30 NEXT X

40 GOTO 10

The ENDLINE " of line 5 does the same thing as setting flag 17 on

the 41: it suppressed the automatic CR/LF on output.

There are some other hardware aspects of this experiment that

are worth mentioning. Notice that both RDYI (Ready Data In) and

DACI (Data Accepted In) lines are always held low. This is an

easy way of specifying no handshaking: always fool the

handshake lines into thinking you're always ready to receive and

that you're always acknowledging the data. (Incidentally, the way

you're supposed to do this is by sending the following sequence to

the GPIO:

10 A=DEVADDR("%64")

20 SEND UNT UNL MTA LISTEN A DDL O DATA 64,0,24 UNT

UNL

This sends out a DDL 0 configuration command and tells the GPIO
not to look for handshake. Here's one case where the hardware

solution is infinitely easier than the software version). Line 10 of

the above 71 program, incidentally, looks for a device of interface

class (accessory ID=64). This is done because the IL Converter and

the GPIO have different loop names ("HP82166A" vs "HP82165A"),

and looking for the accessory ID rather than the standard ID will
find either one. (You probably already knew that after reading the

previous chapter, though.)

Turning anAC Device On and Off

In the previous chapter we discussed how to make an AC light

turn on and off, but never went into the details of how to do it.

Here, we remedy that situation.

At this point, after having the 8 LEDs turn on and off in a binary

46

More Simple Examples

fashion, adapting the circuit to control lamps instead of LEDs is a
straightforward task. Fig. 2-2 shows the same circuit used for

binary counting, except the LEDs are gone. In their place is a

single 110V AC lamp, being controlled by circuitry introduced

earlier in this chapter.

<.’+5V
—

Vcce »

Veci —I
20 123

DAO 3 po oo o
DA1 3 D1 o1 -2— 100 Q

D2 Wv—
DA2 8| 74C373 %2y 2 l
DA3 D3 03— —

DA 131ps = 12 4
141ps |15o DAS5 17] o 051 ¢ 13010

& DA6 6 osl— Triac Driver

G DA7 181 p7 o7

% DAVO 1 {>°2_1‘_ LE =

T 10 |

RDYI i
DACI -
GND .
] Figure 2-2 — Driving Something

- Other than an LED.

There just as easily could have been 8 lamps in figure 2-2; which

should start to give you an idea of the IL Converter's power.
Generally speaking, if you can turn an LED on and off, you can

turn anything on and off!
This is a good time to bring up an impressive attribute of

controlling the world via HP-IL. With the above method, one GPIO

type interface can control up to 16 devices (if it has been properly

configured to be 16 bits wide with the DDL command). Using

primary and secondary addressing, a 41 or a 71 can address up to

961 such interfaces, making a grand total of 15,376 light bulbs (or

anything else) that can be controlled by one computer. Not

impressed yet? Multiply that result by three, since the 71's

operating system can support three separate IL loops

simultaneously. We now have one hand-holdable computer that

can have direct control over 46,128 devices!! Try that with an IBM

PC!!

47

Control The World with HP-IL

Touch Toning ®

Just to show that interfacing can do more than just turn things
on and off, here's a simple circuit that will allow you to turn the 41
into an automatic pushbutton telephone dialer. This project came
in particularly handyback in the days when accessing an
alternative long distance phone service was a painfully long
22-digit (plus waiting) process, and getting a subsequent busy
signal would only help to raise one's blood pressure.

"Touch Tone" refers to a method of telephone dialing which uses
two simultaneous, non-interfering sine waves rather than a pulse
train to signal the central office of the desired digits. Their
advantages are many: in addition to the increased speed in placing

a call,it also provides an inexpensive and accurate method of data
transmission over narrow-bandwidth telephone lines.

First, let me introduce the chip. I am using a National

Semiconductor MM5395 Touch Tone (that's a registered trade

mark of AT+T, you know!) generator which was designed to

replace the many components in a standard pushbutton phone's
keypad with only 3 components: the chip, a 3579 MHz quartz

crystal, and a resistor.

+5v

T " {vss ~ vdd HE
= —I___z_E OscIn Tone N 17 9\82;{3\ >

3 NC Filter 16
3.579 MHz == 4 0 CE 315

XTAL 4[] OscOut m|
50 Mute Cntrl []14
6] c4 R3 :}13_ 8 =

"Oca R2[H2Z— |, a
8 E C1 R3 3%__ 5 >

‘Ogee R4 [T——] z£
®

MMSE395 Touch Tone Generator

The chip's pinout is shown above. It was designed to accept

input from either a standard "2-of-8" keypad (each keystroke closes

48

More Simple Examples

2 of a possible 8 contacts), or from a computer, depending on the

state of the "XMIT" input. Normally, a controlling computer

"dials a digit" by placing a binary representation of the digit onto
pins R1-R4 and setting the chip enable (CE) line high (=1). After

waiting a short interval, the computer then brings the CE line low

(= 0) to instill a brief period of silence the phone company expects to

hear. It then sends the next digit to the chip and starts the process

all over again.

How does one regulate the speed that the number is dialed? We

theoretically could tell the computer to not transmit so quickly, but

as previous experiments showed, the 41 has two transmitting

speeds: Fast (in 24 character bursts with the 41), and slow, with no

chance of intermediate speeds. The solution employed is this: use

the fast mode, but have the circuitry behave like a printer and say
"you can transmit your information when I'm good and ready!".
How does a printer normally say this? Why, with handshake

lines, of course!

The top half of Fig. 2-3 is pretty straightforward; we are simply

replacing the LEDs with a National Semiconductor MM5395 Touch

Tone generator chip. The bottom half is a little more interesting; it

blindly says "Yes, I'm ready" only at predetermined time

intervals, which holds up the output data. This essentially is

clocked output.

Notice that, in the figure, the RDYI (ReaDY data In) and DACI

(Data ACcepted In) lines are connected to the complementary

outputs of a flip-flop, which in turn gets its pulses from a 555 pulse

generator. The flip-flop's output will alternately hold one of the

lines true, and will change states as soon as a pulse comes in from

the 555. The GPIO will hold its output until the RDYI line goes

true. When it does, it transmits a word which the latch holds onto

and feeds to the Touch Tone chip, and then waits for the next pulse

that makes the DACI line go true. With this method you can make

the Touch Tones go at any speed you wish by rotating the 1

Megohm potentiometer.

The following program shows one way to drive this circuitry:

01*LBL "TTONE" 04 CF 21 07 SF 21

02*LBL 05 05 " READY" 08*LBL 00

03 MANIO 06 AVIEW 09 GETKEY

49

Control The World with HP-IL

+5v

Q

20] 5 10 18] 14]

DA —& R1

DA

—

4 > }; R2
-

DA2————31 ,4c373 |9 13] 3
DA3 13| Lach [12 15| R4 4
DA4 cE F——1_ 3.579

MMs3gs |, B3 MHz
Touch Ton§N
Generator

1 Out pAvo —1 2 11 g e

10

1117 eg00

Flip Flop

81,5 GND
6], 4027

RDYI
DACI

1 MegOhm

TO: Red/Greenb
TO: Orange/Black

of Touch Tone

Telephone Keypad

OR

Ié 100 Ohm
~ Speaker

+5v

 50

560 KQ

Figure 2-3
Touch Tone
Hardware

More Simple Examples

10 GTO IND X 27 SF 21

11*LBL 11 28 .08

12 "8531212" 29 STO 06

13 PRA 30*LBL 06

14 GTO 05 31 ISG 06

15*LBL 12 32 GTO 06

16 "1 714" 339999 9"

17 ACA 34 ACA

18" 5497¢6 74" 35 319"

19 PRA 36 ACA

20 GTO 05 37" 5552310"

21*LBL 14 38 PRA

22 98909 28" 39 GTO 05

23 PRA 40*LBL 84

24 CF 21 41 CLD

25 " WAITING" 42 END

26 AVIEW

(Barcode for this program, as well as all other 41 programs, is

provided in Appendix A pg. 295.) The program works like this:

After XEQ'ing TTONE the 41 displays "READY" and the GETKEY

function waits for a key to be pressed. The above program only has

numbers to dial for the A, B, and D keys, but can easily be

expanded (you can substitute your own numbers, too!). If the A

key is pressed, we branch to LBL 11 (the keycode returned by

GETKEY) and it promptly sends out the string to dial "Time".

Notice the spaces between the digits; they are there to serve as

inter-digit silence so the phone company will be happy. LBL 14 is a

little elaborate; it was designed to access one of those alternate

long-distance phone service back in the days when it was a pain.

It first dials a local number, waits for the local computer to answer

(that's the loop between 28 and 32), dials a 5-digit access code, and

finally the desired area code and number.

ASCII-encoded numbers are handled using 6 binary digits: bits

0-3 for the BCD digit, and bits 4 and 5 which are always on. I used

the first four bits and fed them directly to the touch tone chip, and

used the remaining two bits as "chip enable" signals; one going to

the touch tone chip, the other disabling phone line isolation. To

minimize the number of external parts, the circuit connects to the

51

Control The World with HP-IL

speaker may be attached instead of the resistor and the touch tone

frequencies fed audibly through the phone's mouthpiece. Both
should work equally well.

The stability, immunity to noise, and common availability of
Touch Tone signals makes them easy to use for things other than

dialing. More versatile uses for them are covered in Chapters 6, 7,

and 10.
Well, these have been some examples. Despite their simplicity,

these few techniques will be used and built upon in vastly different

ways throughout the remaining chapters. Armed with the

knowledge presented here, you will be able to take the ideas
presented and modify them to fit your own needs, or come up with
completely new applications!

52

Chapter Three

INEXPENSIVE 1/0 USING THE

TIME MODULE

"Never trust a computer bigger than you can lift."

--Anonymous

This method of I/O (which stands for Input/Output) doesn't use
HP-IL. In fact, it's tough to justify including it in this book
because it only works with the 41, is very limited, and requires
some modification (maybe). (As it turns out, we're in for more of

the same later, so we may as well include this, too!)

It's primary advantage is it's the cheapest method for turning

one device on and off. No HP-IL module or IL Converter (with its

mandatory extra power source) is needed. Furthermore, both 41Cs

and 41CVs can use it without modification. (CX owners: read on!)

The Time Module has to be the best-implemented afterthought

that HP has produced for the 41. Yet upon reading some of their

internal documentation, one discovers that the Phineas chip was

designed for even more versatile use. (Phineas is its code name;

every project has one. Its real name is 1LF6, but that's too difficult

to pronounce.) Consider these extras:

1) The Phineas I.C. has inputs to start and stop the stopwatch by

hardware control.

2) Similar inputs exist to start/stop the clock. (Those of you who

enjoy power trips will appreciate this new ability to stop time.)

3) Two outputs are available to mark the occurrence of an alarm

or a stopwatch zero-crossing. This way, when either of the 2

events occur, you can trigger a hardware function rather than or

in addition to waking up the calculator and running a program.

All these extra inputs and outputs are accessible to users who

53

Control The World with HP-IL

are "in the know"; all you have to do is crack open the time module
and there they are! Figure 3-1 contains pictures of what the time
module looks like when you crack it open. When you flip it over,
(2nd photo), you will see 18 unidentified solder pads; 6 of which

have been identified in Fig. 3-2. The pads function as follows:

#1 Stop Stopwatch
#2 Start Stopwatch

These two pads allow you to hook up the stopwatch to the outside
world and measure real time events to 1/100th of a second. If the
two pads are connected together, each positive pulse will then
toggle the stopwatch on or off. The only curious behavior these
pads exhibit is the last digit (100ths position) of the stopwatch
display does not update, although internally it is stored correctly.

Hitting any key will restore the last digit to the correct value.

Figure 3-1: Photos of Phineas, the nickname for the time module,
when cracked open. The left photo (3-1a) shows the front view; the
rear view on the right (3-1b) reveals previously unknown solder
pads which can be used for interacting with the outside world.

Inexpensive I/ 0O Using the Time Module

Start SW Start Clock

Stop SW \\
/ [Stop Clock

OO El EI EI EI

|:I —ALMOUT

Gnd — #67

Vce I:l |:]

O

Figure 3-2
Phineas' Rear View

#3 Start Clock
#4 Stop Clock

Although less useful than the above, these two pads enable you
to start or stop the clock advance. The clock functions still operate;
i.e. the quartz crystal still vibrates, the stopwatch still runs, etc.,

it's just that the clock register never gets incremented. If these

two pads are tied together, a single pulse will toggle the clock on

and off. Toggle mode will also turn the 41 on, but since user flag 11

is ignored this is not a useful form of input. Another problem

with stopping time while in clock mode is that sometimes the

ALMOUT output pad will "go crazy" and will randomly turn on
and off several times a second. Undesirable behavior.

Both the clock and stopwatch test pads are internally tied low,
debounced (to a minimal degree), and require a minimum pulse

width of 10ms to activate.

#5 ALMOUTA (Alarm "A" Out)

[#6 ALMOUTB (Alarm '"B" Out)]

Pad #5 is the new means of control mentioned earlier. Every

time an alarm becomes active, the time module will 1) pulse the

ALMOUTA pad (once for a normal alarm or twice ifit's a

repeating alarm OR if there are any other alarms in the

55

Control The World with HP-IL

ALMCAT), and then 2) will turn the 41C on and service the alarm.

This test pad, therefore, becomes the only means for output.

The pad below it, ALMOUTB,is supposed to behave similarly
whenever the stopwatch is counting backwards and crosses zero (a
"TIMER ALARM"), but it seems this never got implemented, as

pad #6 doesn't do anything.

Transforming the ALMOUTA pad's pulses into useful output is
a task that is only slightly more involved than the techniques

discussed in Chapter 1. This time, instead of using an 8-bit latch

to hold onto the momentary signal, we will use something called a

JK Flip-Flop, which will be wired to act like a divide-by-two device.
Such devices' functions are almost self-explanatory. The output

is exactly half the input: two pulses in, one pulse out. One pulse
in, half a pulse (the output stays either low or high) out. This is
precisely what we need to drive the standard light bulb
configuration in Fig. 3-3.

I —IeL

o +5v

16
10 15 5 .0 Q 6

J Q }, T—"
2In 13 4027

—¥e L ‘E_.
11 Set |12)K 9 3010

Rst Triac Driver
8

Flip Flop

= Figure 3-3
Turning a Single
Pulse into an
On/Off State.

In the simplest case, where you have a non-repeating alarm

and an empty alarm catalog, a single pulse appears on the

ALMOUTA pad when an alarm activates. A JK Flip-Flop wired

as in Fig. 3-3 will take the pulse and change the state of the output

56

Inexpensive I1/0 Using the Time Module

HEY, ROCKY.
WATCH ME PuLL
AN INEXPENSIVE
MEANS OF 1/0

11l ouT oF A HAT!

8ur Buuwtmcu:‘,
THAT'S A TIME

MODULE! TIME
MODULES CAN‘T

INTERACT wWITH
HOE WORLD

NOTHIN' up

... PRESTO!

-
~

SURE THEY CAN!
BECAUSE INSIDE EYERY
ONE ARE THESE LITTLE
UNDOCUMENTED

ATTACHING WIRES TO THEM
WiLL ALLOW OUTSIDE EVENTS TO
CONTROL THE CLOCK OR THE
STOPWATCH, SO WE CAN ACTUALLY
MAKE USE OF IT'S 100™ OF A

D _SECOND ACCURACY !

WHICH MEANS WE
CAN ACCURATELY
MEASURE THIS SPRINTERS
TIME AT THIS RACETRACK.

57

Control The World with HP-IL

 OR HAVE AN ACTIVATING
ALARM TRIGGER, ANZ2
OUTSIDE evsr;(”2R

You CAN MAKE TIME
MEASUREMENTS AND
RUN PROGRAMS
SIMULTANEOUSLY J

GOLLY, BULLWINKLE,
THAT SOUNDS GREAT!
BuT HOw CAN 41-CY
OWNERS ACCESS THIS

 |
[] tag 1\ Looks LIKE | GOTTAel

'\
 fJ:H 3 ‘] S } ‘

C ‘ =]i

b

1L GET Me A New HaT!)

AND NQOW HERE'S
SOMETHING WE
HOPE You'LL

REALLY LIKE/

58

Inexpensive I/ 0O Using the Time Module

labelled "Q". Since a logic 1 is electrically equivalent to +5v, this
output can be applied directly to the Opto-isolator to switch
anything on and off every time ANY alarm activates.

ST I eL
+5v

 3010

Triac Driver

Figure 3-4
Tumning 2
Pulses into
an On/Off
State.

If on the other hand your alarm catalog is not empty or a

repeating alarm activates, two pulses come out and a second

divide-by-two Flip-Flop is added to compensate, as in Fig. 3-4. For

consistent behavior, I constructed Fig. 3-4, and always keep a

dummy alarm, setto go offin 1999, in my ALMCAT. This

guarantees two pulses at the ALMOUTA pad.

Now the big question is: how can we harness these new features

and still retain the 41's neatness and portability? The answer
depends on your configuration. If you have a C or CV model, use

two Time Modules: one with wires coming out, one without. Then
just swap the two when the occasion arises.

If you have a 41CX, then more work awaits you, but you get the

fringe benefit of never losing your time, date, or accuracy factor
when switching modules. Modification of the CX will be covered at
the end of this chapter.

59

Control The World with HP-IL

The Perfect Field Application

I purchased an extra time module, and got a hold of a plug and
cable assembly originally designed for the 41's dedicated printer
(82143A). (I scrounge at swap meets a lot.) I then proceeded to
build into it the circuitry shown in Fig. 3-5. This handy little

package allows maximum versatility, as the 7-conductor cable can
carry 2 wires from the triac driver's output, as well as leads from

pads 1 through 4, and Vce. (No reference ground is needed.) This
means thatall the new I/O previously unattainable is now
available to the outside world through this cable; and in addition
the pulses coming from ALMOUTA are already conditioned!

The first thing I did with it was to hook the triac driver's output
to my electronic 35MM camera and have it take time exposures at

night, one of my all-time favorite applications.
Anyone who's ever taken pictures of the city at night knows that

any good results are lucky ones. With the camera on a tripod and

set to "B", the photographer can only guess as to how long to leave

the shutter open for proper exposure. Good photographers will

take several pictures with many different exposure times, hoping

that one of the frames comes out right. This tedious procedure

involves constant clock watching (ever try watching a clock in the

dark?), boredom, and a stiff finger if you forgot your locking cable

release.

Inexpensive 1/0 Using the Time Module

+5v

Alrm

Out
"A" 3010

Triac Driver

Figure 3-5
Time Module
to Camera
Interface. Camera's

Electronic
Shutter

Release

If your camera has an electronic shutter--the kind that can be

actuated by shorting a pair of contacts together instead of moving a

mechanism--and if you have an automatic winder, then the time

module adapter and the accompanying program called CAMERA
can not only make time exposures fun again, but will also help

guarantee a good result.

The program works as follows: After loading and executing, the
program prompts for BASE TIME? Let's say we want to start with

a 1-minute exposure. With the camera on "B", we hit 1 R/S, and

the camera will open the shutter and the display will start
counting up, a la stopwatch mode. After 1 minute has elapsed, the

shutter closes, the camera winds itself, and the HP quickly

calculates anew time to give the next frame 1/2 stop more

exposure, and another picture is taken. The program will take 6

pictures, each increasing the exposure in 1/2 stop increments.

With a base time of 1 minute, the 6 exposures will last 1:00, 1:24,

2:00, 2:49, 4:00, and 5:39. (Keep in mind that the shutter speeds are

61

Control The World with HP-IL

a geometric progression, so halfway between 1:00 and 2:00 is not
1:30, but rather 1:24.5.) One of these timesis highly likely to yield a
good picture. When running the program with this sample time,

one might notice a 1-second discrepancy; i.e. 4:00 being displayed
as 3:59.99, but the correct duration is still employed.

If you wish to halt all operations during an exposure, hit the R/S
key. It will restore the clock time and tell you to CANCEL
ALARM. Do it!! If this crucial step isn't done, your clock time and
possibly the date will be changed.

Barcode for the CAMERA program, presented below, begins on

page 271.

01*LBL "CAMERA" 30 STO 02 59 RCL 02

02 CLST 31 .00005 60 T+X

03 10.201999 32 HMS- 61 CLK12

04 ENTER" 33 CHS 62 RCL 01

05 10.2 34 T+X 63 HR

06 XYZALM 35 CLX 64 X2

07 FIX 4 36 RDN 65 2

08 "BASE TIME?" 37 XYZALM 66 *

09 FC? 01 38 " " 67 SQRT

10 PROMPT 39 ATIME24 68 HMS

11 100 40 AVIEW 69 STO 01

12 / 41 PSE 70 ISG 03

13 STO 01 42 PSE 71 GTO 03

14 1.006 43 CLOCK 72 " THATS IT."

15 STO 03 44 CLST 73 BEEP

16*LBL 03 45 "~~CLOSE" 74 AVIEW

17 CLST 46 TIME 75 RTN

18 "~~OPEN" 47 .00015 76*LBL "BB"

19 TIME 48 HMS+ 77 CLST

20 .00015 49 XYZALM 78 "~nCCT

21 HMS+ 50 RTN 79 TIME

22 XYZALM 51*LBL "CLOSE" 80 .00015

23 RTN 52 RCL 02 81 HMS+

24*LBL "OPEN" 53 T+X 82 XYZALM

25 CLST 54 CLK12 83 RTN

26 RCL 01 55 "CANCEL ALARM" 84*LBL "CC"

27 CLK24 56 AVIEW 85 END

28 "~~SHUT" 57 RTN

29 TIME 58*LBL "SHUT"

62

Inexpensive I/0O Using the Time Module

Flag 1 is used when you set an alarm to have the sequence start
while unattended. With flag 1 set, the number in the X register is

taken as the base time without the program prompting.

This wonderful little setup allows you to walk away from your
camera and have a dozen or so cups of coffee while your equipment

does your bracketing for you. The program will allow for time

exposures as long as 24 hours; however if you try that you'll find
that the camera's batteries will die much earlier. This is because
electronic shutters require battery power to electromagnetically

hold back the second shutter curtain. When your batteries die,

your exposure terminates.

.

T

]

F
M 0 S
ei
ul
y

The Versatile Adapter, consisting of a time module, a CMOS Flip-Flop,
and an opto-isolator,fits snugly inside a printer plug.

Information for CX Owners

So here's the thing: if you build the Time Module adapter as

described above and tried to plug it into a CX, you would have two

time modules competing with each other each time a time function

is called. This renders things like CLOCK, DATE, and RCLSW

useless, since their results would randomly come from one

module or the other. (XEQ'ing CLOCK has some really interesting

effects when two time modules are plugged in!)

63

Control The World with HP-IL

The suggested solution may seem a little extreme, and some of

you may not wish to attempt it. In the 41CX, the Phineas chip
takes the form of a 20-pin DIP IC rather than in plug-in module
form. It appears as the black vertical IC in the photo below. (The

other parts on top of it are the components required for a speedup.)

Inside the 41CX. The time module chip is located at the lower right.

In order for an external time module to work without conflict, it

is necessary to disable the internal 1LF6 chip. Fortunately, an
easy method exists that not only requires little modification, but the

internal Date and Time are unaffected!
It involves opening the calculator and installing a single, tiny

DIP switch as shown in Figure 3-6. Two wires from this switch
are then drawn over to the 20-pin DIP Phineas chip whose ISA

(pin 7) has been severed between the chip and the PC board it's
mounted on. (A tiny pair of wire cutters should be enough to clip

this pin in half). Using the tiniest of low-wattage pencil soldering
irons, one must solder each of the two DIP switch wires to each

part of the split ISA pin.

The 41 uses the ISA line to either address its peripherals (ROM,

RAM, IL Module, etc.) or to have the peripherals wake the 41 up. If

this crucial line is severed the CPU doesn't "see" the time module,

even though it is still there and still keeping good time. With the

isolation complete, we can now plug the Time Module Adapter

64

Inexpensive I/0 Using the Time Module

Stop B Start A
12

1

1LF6
) 1 20

Install switch 2ESINC Alarm BE49
to interrupt 3E DATA Alarm A[dqg
the ISA line 4|: Osc Out phase 1 47

5 O Phase 2 :11 6
s []Oscn :|1 5

;GG vee A
To 4——0 ISA a4
Wherever 8[: PWO Stop A :]13

O
O Start B m]

Figure 3-6.
How to disable the
timer chip's ISA
line on the 41-CX.

into any of the 41's four ports and use it normally. When the
application is completed and the adapter removed, a flip of the DIP

switch will reinstate the internal Time Module without loss of time

or date, and any past due alarms will immediately start

processing.
I realize that most people are not well-versed in micro-electronic

surgery, so I will issue the standard warning: If you're not

GENERATOR

=

 65

Control The World with HP-IL

confident with your skills in electronic assembly, get someone who
is to perform the modification for you. (There are also services

available for those of you who would like to have the work done by
somebody else. See Appendix B for more information.)

For applications involving turning only one item on and off, this

new time module technique is superior in terms of size, power
source, and cost. When it comes to taking crucial time

measurements, the time module provides the only means of doing
so. The two capabilities provide an unexploited method of real
world control that rivals many desktop systems.

A DIP switch on the 41's exterior can temporarily disable the
internal time module while the versatile adapter is plugged in. The
module can be made "invisible" without the loss of time, date or

accuracy factor.

66

Inexpensive I/ O Using the Time Module

67

68

Control The World with HP-IL

Chapter Four

DARKROOM CONTROLLER

"Someday my prints will come..."

-- Snow White after her pictures didn't arrive.

Here is one of my all-time favorite applications. Not only has it

shortened my sessions in the darkroom and increased my

productivity, but it is clearly a case where computers can help take

the tedium out of work and leave the user free to concentrate on

creative processes.

You will find that I will try to introduce new techniques in every

chapter while building on previous knowledge, and this chapter is

no exception. Here, with the introduction of the analog to digital

converter, I will describe a 41-based darkroom -controller that

performs the following useful functions:

-- It acts as an enlarger timer, precisely controlling the duration

of the enlarger's light source. The latest exposure time is always

remembered, and can be accurately reproduced or "tweaked" as

the user seesfit.

-- Tt keeps track of all prints in all chemical baths, and issues

distinct audible signals to announce when it's time to move a

print.

-- Tt computes the change in exposure time necessary when

printing with variable-contrast papers. Changing filters is no

longer a trial-and-error task.

69

Control The World with HP-IL

-- Using an analog-to-digital converter,it takes N readings from

the negative and recommends both an exposure time and a filter to

achieve a technically good print.

This chapter will be divided into two parts: The first part is
quite straightforward; it explains how to build a simple enlarger
and print timer using familiar hardware and software techniques.
The second partintroduces the A/D converter for further

automation benefits, and a few software techniques to improve the
response time and consume less battery power.

Part I: A Simple Start

The first phase of this project uses circuitry introduced in

previous chapters, for no other reason than to show that slight

rearrangement of the techniques already covered can yield any

number of truly useful systems.

The hardware needed is that which turns on and off a light

bulb. (The light bulb in this case happens to be surrounded by an
enlarger.) (See Fig. 4-1.) This and a program which uses the
Extended Functions/Memory module are all that are needed to

implement all but the last feature in the above list.

With the circuitry in Figure 4-1, all you have to do is a "32

ACCHR"to turn on the light, and a "0 ACCHR" to turn it off, and

in fact this is precisely how the FOCUS function (assigned to the +

key) is implemented in the program provided below. But before

talking more, some history describing the evolution of this system

is in order.

A simple print timer

The original need developed (no pun intended) from my many

tedious sessions in the darkroom. After a print was properly

developed, it would have to soak in a chemical bath (called the

fixer) for 2 minutes, then promptly be moved to a wash bath for 4

minutes. On busy nights there were always 1 or 2 prints in the

70

Darkroom Controller

O+5V

Vce »

vei—
20 321

DAO DO 00

DA1 5 D1 ol o 1000

DA2 P2 acara 92 }I -2
DA3 b3 Latch [
DA4 D4 04

o DA5S b5 05 3010
& DA6 D6 06 Triac Driver

& DAY D7 o7

% DAvo—1—|>.—2i LE & |

E 10 |

RDYI [
DACI =
GND

-+

Figure 4-1
Hardware for an
Enlarger Timer

fixer and at least 3 in the wash at any given time, and mentally

keeping track of when to move what print while at the same time

concentrating on the creative aspects at the enlarger proved to be

quite taxing. What was needed was something that would

automatically keep track of the prints for me, and quietly

announce when it was time for each to be moved.

Using only a 41C and a time module, this proved to be an easy

software task. As soon as a print enters the fixer, the R/S key is

pressed, which promptly sets 2 control alarms using the XYZALM

function of the time module. After 2 minutes elapse (when it's

time to move the print to the wash), the first alarm (at label Al)

activates, "chirps" three times to announce that a print should be

moved, and updates the display, which always shows a running

count of how many prints are in the fixer and how many are in the

71

Control The World with HP-IL

wash. After an additional 4 minutes (when it's time to remove the
print from the wash and hang it up to dry), the 2nd alarm (at label
A2) activates, "beeps" three times to announce that a print is ready

to be dried, and again updates the scoreboard.

A darkroom is a rather noisy environment, which is why it is
advantageous to have two different, very distinguishable sounds
generated for each alarm. A unique sound which I call the
"chirp" provides this instant recognizability, and is generated via a

whole string of TONE 89s, the synthetic instructions occupying
lines 54-61 and 66-73. (See DKRM3 listing later.) Three
conventional TONE 6s provide the other warning, therefore
allowing instant recognition of which print is to be moved without

having to consult the 41's display.
The first two lines of the program show another advantage of

synthetic instructions: the ability to set many system parameters,

which are normally not changeable under program control, at

once. Here its main advantage is setting the continuous-on flag

(flag 44), a feat normally accomplished by manually XEQing ON (a

non-programmable function).

Software for added Functionality

Extra software was added to control the duration of the enlarger

lamp, thereby turning this simple capability into more of a

time-saving tool. The system is controlled by the global

assignments that have been PASN'd at the program's onset as

illustrated in Figure 4-2.
As mentioned earlier, pressing the "+" key toggles the enlarger

on and off for focusing. The "*" (MANual) key does the same

thing, except for this key the calculator remembers how long the

enlarger was on and stores it in R04. This way, I can make an

educated guess as to the exposure on a test print. If it was right,

the final print can be exposed simply by hitting "/" (AUTO) and the

enlarger is activated for the exact time of the previous trial.

If my guess was incorrect, the exposure can be "tweaked" by

keying the adjustment into the X register and hitting "-" (ADJust).

If 2 seconds less exposure is desired, for example, I key in "2 CHS

-". Hitting "/" (AUTO) then implements this new time. Once the

72

Darkroom Controller

correct exposure has been
determined, making

hundreds of identical
reprints from the same
negative is accomplished

just by hitting AUTO.

Another darkroom task
best left to a computer is

the calculation of exposure
adjustments when

changing enlarger filters.
When 1 feel the exposure

Exposure= Display E

o]
Change Fitter

ifimmmfimmmmfln
B4 Adjust

(e
Focus

Figure 4-2:
Darkroom Confroller
Key Assignments

is right but the contrast needs changing, I'd press "C" (for

"Change"), and the 41 prompts me for the old and new

Polycontrast filter number, and then adjusts the exposure time (it

always remembers the last exposure time) accordingly. The "/"

(AUTO) key implements this new time.

The program that performs all this stuff is listed below.

Barcode begins on page 273.

01*LBL "DKRM3"

02 "++D<+++"

03 RCL M

04 STO d

05 "FOC"

06 61

07 PASN

08 "MAN"

09 71

10 PASN

11 "AUTO"

12 81

13 PASN

14 "ADJ"

15 51

16 PASN

17 CLRG

18 GTO 02

19*LBL 01

20 CLST

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

TIME

STO 01

.0215

HMS+

24

X<=Y?

XEQ 03

RDN
"N /\Al "

XYZALM

CLST

RCL 01

.07

HMS+

24

X<=Y"?

XEQ 03

RDN
nA /\AZ W

XYZALM

41 E

42 ST+ 02

43*LBL 02

44*LBL D

45 FIX O

46 CF 21

47 CF 22

48 CF 29

49 v v

50 ARCL 02

51 "| FX. "

52 ARCL 03

53 "| WSH"

54 AVIEW

55 RTN

56 GTO 01

57*LBL 03

58 MOD

59 TIME

60 INT

73

61

62

63

64

65

66

67

68

69

X=07?

RTN

RDN

DATE

E

DATE+

X<>Y

RTN

70*LBL B

71

72

73

74

75

76

77

78

79

80

FIX 6

RCL 04

ATIME24

CF 21

AVIEW

SF 21

CF 22

RTN

GTO 01

81*LBL "Al"“

82

83

84

85

86

87

88

89

90

91

92

93

E

ST- 02

ST+ 03

RDN

XEQ "T1"

PSE

XEQ "T1"

PSE

XEQ "T1"

FS? 03

RTN

GTO 02

94*LBL "A2"

95

96

97

98

99

100

101

74

E

ST- 03

RDN

TONE 6

PSE

TONE 6

PSE

102 TONE 6

103 FsS? 03

104 RTN

105 GTO 02

Control The World with HP-IL

143

144

145

146

FS? 01

GTO 05

32

ACCHR

106*LBL "MAN"

107

108

109

110

111

112

113

114

115

116

FC2C 02

GTO 08

ACCHR

TONE 87

RCLSW

STO 04

CF 22

ALMNOW

GTO 02

117*LBL 08

147 " FOCUS™"

148 CF 21

149 AVIEW

150 SF 01

151 RTN

152 GTO 01

153*LBL 05

154

155 ACCHR

156 CF 01

157 GTO 02

158*LBL "AUTO"

118 "+i+++"

119 X<> M

120 X<> ¢

121 ALMNOW

122 X<> ¢

123 SF 21

124 .

125 STOPSW

126 SETSW

127 32

128 ACCHR

129 TONE 87

130 RUNSW

131 SF 02

132 CF 21

133 ¢ MANUAL"

134 AVIEW

135 SF 21

136 RTN

137 GTO 01

138*LBL E

139 CLOCK

140 GTO 01

141*LBL "FOC"

142 SF 21

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

FS?C 22

XEQ 09

i+

X<> M

X<> ¢

ALMNOW

X<> C

SF 03

SF 21

32

ACCHR

TONE 87

"ANEQFE"

TIME

RCL 04

HMS+

5 E-5

HMS-

+

CLST

LASTX

24

X<=Y"7?

XEQ 03

RDN

184

185

186

XYZALM

ALMNOW

GTO B

187*LBL "EOFF"

188

189

190

191

192

193

SEF 21

ACCHR

TONE 87

CF 03

GTO 02

194*LBL 09

195

196

197

198

E4

/
STO 04
RTN

199*LBL "ADJ"

200

201

202

203

204

205

E4

/
RCL 04

HMS+

STO 04

GTO B

206*LBL "FLTR"

207*LBL C

208

209

210

211

212

213

214

215

216

217

"FILTER #172"

PROMPT

2
*

10
+

XEQ IND X

"FILTER #272"

PROMPT

2

Darkroom Controller

218

219

220

221

222

223

224

225

226

227

228

229

230

*

10
+

XEQ IND X

X<>Y
RDN
/
RCL
HR
*

HMS
STO
GTO

231*LBL

232

233

500

RTN

234*LBL

235

236

250

RTN

237*LBL

238

239

400

RTN

240*LBL

241

242

320

RTN

243*LBL

244

245

320

RTN

246*LBL

247

248

250

RTN

249*LBL

250

251

Synthetic Text Lines:

68,60,132,136

1,105,1,0,16
1,105,1,0,16

02:

118:

161:

100

RTN

04

04

10

12

13

14

15

16

17

252*1LBL 18

253

254

80

RTN

255*LBL e

256

257

258

259

260

261

262

263

264

265

266

267

CLA

61

PASN

71

PASN

81

PASN

51

PASN

FIX 4

CLST

RTN

268*LBL

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

TONE

TONE

TONE

TONE

TONE

TONE

TONE

TONE

TONE

TONE

TONE

TONE

TONE

TONE

TONE

TONE

END

|IT1II

89

89

89

89

89

89

89

89

89

89

89

89

89

89

89

89

Control The World with HP-IL

Part II: Make it Better

Now that most of the tedium has been removed from my
darkroom work (courtesy of my 41), I felt it was time to let my

calculator take over one additional aspect: take the guesswork out
of the initial exposure time by measuring the light hitting the
paper and recommending exposure time and filtration. This is

where some additional hardware is needed.

The A/D Converter

The chip used here, the National Semiconductor ADC0804, is

your Dbasic, no-frills, been-around-forever analog-to-digital
converter which takes a variable voltage (in this case a
light-sensitive cadmium sulfide photo cell) as its input and
provides an 8-bit number at its output. (See Figure 4-3.)

+5v

20]> L ?

DA711l b7 Vee WR ., 6 : 0 O

DA6 ———12{ pg RD o< |-—

Data |DAs ———13] ps ADC0804 o 2

Bus oas——

4

s Ck R 19 |—:- Linear
A DA3—— 1381p3 4 10KQ |150 pF 2\ Photo

DA2 ———18{ Clk In = 2/ cael
6

DAl ———17] D1 Vin(+)

DA0——

181

pg 7 2 e
5 vin(-) =

INTR o L

A+D GroundsV ref/2 -
8 1o| 1

- 1MQ 1MQ

.01 uF

——i

_L ! Gnd +5

= 2 Tn'gsssDisc

3

DAV|—o<}— ou Thr , .
5’ Ng | “Timer Figure 4-3

|: Rst v The Analog-
to-Digital
Converter

76

Darkroom Controller

The underlying principles behind analog to digital converters

are actually quite simple. Using a two-input element called a

comparator, the converter compares the voltage supplied at the

input with an internally-generated voltage that starts at Ov and

continuously rises until it matches the input voltage, at which

time the comparator says "Okay, they're equal”. At that instant,

the voltage increase halts, and an 8bit counter (whose value is

proportional to the rising reference voltage)is displayed at the A/D

converter's output.

The ADC0804 uses something called differential input mode,

which takes as its analog input the difference in voltage between

the (+) and (-) inputs. (Pins 6 and 7.) As will be seen shortly, this

feature combined with the Vref/2 pin (pin 9) allows for an

incredible amount of different configurations. This is important,

since it means we can use anything as input. Using external

resistors, we can program the chip to scale its output up or down

and allow us to measure the intensities of solar flares or fireflies;

sound intensities of glass being broken or space shuttles taking off;

temperature variations on the Earth or on Venus. In short, you

can magnify or compress the 256-unit range to fit any form of any

input you care to supply!

The lower half of Figure 4-3 also contains something called a

pulse expander, comprised of a commonly available 555 IC timer

and some support components. To understand its function, recall

the handshaking scheme described in Chapter 1. A pulse must

appear on the DAVI line telling the GPIO that the stuff it sees on

the data lines is valid. Well, what wasn't mentioned is that this

DAVI input will only accept pulses that last a minimum of 60

milliseconds. The pulse width of the A/D converter's STROBE line

output is only 10 ms, a mere 1/6 of the width required by the GPIO.

This pulse expander does exactly what its name implies: it takes

a pulse of any duration from the input marked STROBE, and

outputs to DAVI a fixed length, 100 ms pulse, much larger than

the required width. When doing any type of general-purpose

interfacing, it is a useful circuit to have for conditioning any

signals, since it debounces as well as expands its input.

For this application, I wish to measure the amount of light

coming from an enlarger using a photo cell, a device whose

77

Control The World with HP-IL

resistance decreases proportionally with the amount of light that
hits it. The three challenges here are 1) somehow convert a
variable resistance into a variable voltage for the A/D converter, 2)

"program" the converter to give a full-scale swing in response to

the relatively small variance in intensities coming from the
enlarger, and finally 3) make the A/D converter's output

meaningful to the computer that will be receiving it.

Voltage Divider

The solution to the first challenge is to use the most basic of

electric circuits that uses only one other resistor: the voltage

divider. In theory, if you have two resistors of equal value

arranged in series across a 5-v source as in Fig. 4-4, the voltage at

the midpoint would be 2.5 volts.

+5v

+5v

500KQ

—_— 1MQ
7 I ;

2.5 Volts
500KQ 2.5 Volts 1 v

v

Figure 4-4
Two Equivalent
Voltage Dividers

The two-step method for deriving the midpoint voltage using two

different resistors (as illustrated in Fig. 4-5) comes directly from

Ohm's Law: Volts = Current X Resistance. First, calculate the

total current running through these resistors:

I (=current) = V/R = 5v/1,000,000 Ohms = .005 milliamps

Then, starting from the top, we just subtract the voltage drop due-

to each resistor to get the voltage at that point. In this case:

5 - (.005 mA)x(300 KOhms) = 3.5 volts.

78

Darkroom Controller

The steps involved in adapting this converter to your specific
photo cell (not all behave the same way) are very straightforward:

1) Go into your darkroom with an ohmmeter and a photocell.
Making sure that no stray safelight rays hit the cell, take two

readings off the ohmmeter: the photocell's resistance with the
lamp shut off, (call this reading "R(d)") and with the lamp turned
on with no negatives or filters in place and the enlarger head all

the way down (label this reading "R(1)"). These values correspond
to the darkest and lightest your negative can ever be. If you find
that your two readings do not differ greatly (i.e. by less than a
factor of 10), try a different kind of photocell. I personally find that
Cadmium Sulfide (CdS) cells work best in this environment.

+5v

300KQ

200K Figure 4.53.5 Volts Voltage Divider Using
Unequal Resistors

2) The photo cell will be used as the top resistor in a voltage

divider as pictured in Fig. 4-5. In this way, the change in

resistance will directly affect the voltage appearing at the

midpoint. A value of the lower resistor that will cause the greatest

voltage swing for the measured resistance values must now be

calculated. The formula for the voltage swing is:

Rq R
. _a L

Voltage Swing = 5 Rd+x
R L+X

where X is the value of the bottom resistor. Try "plugging in"

several values of X until the voltage swing hits a maximum value.

(You may wish to invest in a fine pocket calculator to help speed up

79

Control The World with HP-IL

the maximization of the above expression.)

Finding the proper value for the bottom resistor will increase
the sensitivity of the A/D Converter for your particular

environment, and allows you to go on to the next step, which is:

Building the Circuit

Figure 4-6 shows the entire circuit for the darkroom controller.

For ease of use, this circuit is contained in two separate housings:
the base unit, which contains the power supply, A/D converter,

triac, IL Converter, 555 timer, and AC receptacle for the enlarger;

and the "RAT" (which is sort of like a mouse except the trackball
on the bottom has been replaced by a photocell on top), which

contains the pushbutton switch and the photocell. The rat is
attached to the main housing by a three-conductor cable, which
carries the wires eminating from the dashed box in Figure 4-6.

Because this project involves turning AC devices on and off, and

because it is to be used in the vicinity of water and chemicals, it is

important to take some extra precautions when building the
enclosure and placing the components. Be certain all AC
connections are well insulated; building it into a plastic box is

extra insurance against accidental shock. For extra safety, add a

fuse with the same rating as the enlarger to the power cable.

Calibrating the Circuit in the Darkroom for the First Time

After building the hardware and loading the DKRM4 program

below, the final step is to calibrate the A/D converter for your

particular enlarger. To do this, you need a set of calibrated

reference negatives. This is easy to obtain; just get a photographic

18% grey card and, using a 35MM camera, take 7 pictures of it,

each frame having one stop more exposure than the last. Start

with correct exposure, then overexpose one, two, and three stops,

and then underexpose one, two, and three stops. An unexposed

frame (shoot with the lens cap on) is also needed for calibration.

It's helpful to mark the negatives with their respective exposures,

80

81

A

D
A
V
O

T

+5
v

?
+
5
v

2
0

'

V
e
c

 W
R

D
A
7

D
7

DA
6

D6
RD

D
A
5

13
|

b
5
A
D
C
0
8
0
4

pA
4
—

D

pA
z

—

1
8
1

p3
7
4
C
3
7
3

_
_
_
_

—

p
A
2
—

1
8
1

pp
Cl
k

In
L
a
t
c
h

DA
1

7]
b1

vi
n(
+)

E
=
3

Do
7

vi
n(

-)

Li
ne
ar

Ph
ot
o

Ce
ll

D
a
t
a

B
u
s

Cl
k
R

IN
TR

A+
D
Gr
ou
nd
¥
re
f/
2

V
C
C

g]
19

1

V
C
1

1
M
Q

R
D
Y
!
I

-
U
g
h
t

DA
CI

Ad
ju
st

=

.0
1
p
F

11 1r

G
N
D

+
5
V

o—9e

I

Wl".

L
+
,

55
5

r
—
—
o
d
—
s

D
A
V

T
i
m
e
r

2
0
0
K
Q

1
Fi

gu
re

4-
6

C
o
m
p
l
e
t
e
S
c
h
e
m
a
t
i
c
,

in
cl
ud
in
g
t
h
e

|I
EE
E'
s
n
e
w

s
t
a
n
d
a
r
d
s
y
m
b
o
l

fo
r
a
n

en
la

rg
er

.

o N o d

04
7
uF

Darkroom Controller

Control The World with HP-IL

so when comparing "corrected" prints later on you'll know what
exposure you started with.

1) First, position the Vref/2 potentiometer (the one connected to
pin 9 of the ADC) at the halfway position, setting that pin at 2.5
volts. (Disconnecting pin 9 achieves the same thing.)

2) With the photocell safely shielded from the safelight, take a
reading of the ambient light using the INTR routine from the
program DKRM4. Adjust the Vin potentiometer (the one
connected to pin 7) until the HP-41 just reads zero. This pot adjusts
the offset, and insures that both V+ and V- are at the same voltage
when the reading should ideally be zero.

3) Turn the enlarger on. With the housing lowered all the way

and with the unexposed negative in the carrier, slowly adjust the

Vref/2 potentiometer until the readings just hit 255, its full-scale

value. Just seeing "255" off the 41's display is not enough; the ADC
may be displaying an overflow value without telling you. Because
we're making use of the A/D converter's full scale to represent our

relatively narrow range of light intensity, we can now make very

accurate readings.

4) Determine the Exposure Curve. Take the 7-negative strip of

grey card exposures described earlier and make an accurate print

of each frame, without filters, using the old-fashioned

trial-and-error method. This will yield 7 identical photos of grey

cards, so it is best to mark each photo with initial exposure (-1, +2,

etc.), enlarger time, and A/D reading. Here are the numbers I

came up with:

41 Reading

Exposure (sec)
-2 1

-1 2

0 4

+1 8

+2 16

82

Darkroom Controller

41 Reading vs. Correct Exposure Time

20

10

Ex
po
su
re
,

in
s
e
c
o
n
d
s

 07— T T T T 1—T

30 40 50 60 70 80 90 100

41 Reading

This table is used to determine the proper exposure given a

reading of an 18% grey area of the desired negative. The equation
describing this graph turns out to be:

of seconds = 5.38E5 x (reading) » -2.9

Again, the numbers and the equations will be different for every

cell, resistor, and enlarger combination. Those displayed here are

only examples.

5) Make adjustments to the filtration guides. When two or more

readings are taken (lightest, darkest, and 18% grey), the calculator

recommends a polycontrast filter # and an exposure time already

compensated for that filter. The rules this program follows for

determining the filter are as follows:

Range (lightest-darkest) Filter #

< 35 4

36-45 3.5

46-55 3

56-65 2.5

66-75 2

76-85 1.5

86 > 1

83

Control The World with HP-IL

As you gain more experience with the darkroom controller, these
numbers may be tweaked to meet your personal preferences. It is
an easy thing to do; the constants are stored as comparison

numbers at LBL 33. But since this unit's only purpose is to give a
general recommendation, these numbers should suffice.

Complete Instructions for the Darkroom Controller

1) With all the hardware hooked up, XEQ DKRM4 (or DKRMS3 if

you're using the simplified version without the A/D converter.)

2) To turn the enlarger lamp on for focusing, hit the FOCus (the

"+") key. To turn the enlarger off, hit the FOCus key again.

3) Once the image has been sized and focused, there are 3 ways to
tell the unit how long to operate:

A) Using the 41's keyboard, punch in the desired number of

seconds and hit AUTO (the / key). This time is implemented and

stored in R04.
B) Use the MANual (the *) key to turn the lamp on. When you

feel the print has absorbed enough light, hit the MAN key again to

turn the enlarger off. The duration just implemented is

automatically measured and stored in R04 for future use.

C) (This applies only to the A/D converter version.) Use the

"RAT" to measure the light coming from the negative and have the

41 calculate the proper exposure. (See below, "Using the RAT".)

4) Develop the print in the normal fashion. When the print enters

the fixing bath, hit the R/S key. This sets 2 alarms which will

automatically remind you when the print should change baths.

With the RAT, the above steps should yield a technically acceptable
print. Many adjustments, however, may be necessary in order to

obtain an artistically excellent one. To make these adjustments,

the following steps should be used:

Darkroom Controller

5) To 'tweak' the enlarger time, key in the number of seconds to
add to R04 and hit ADJust (the - key). For example, if you feel the
print needs 2 seconds less to make it perfect, key in 2 CHS ADJ and

the time is altered. Hitting AUTO implements the new time.

6) If a different filter for contrast is desired, the new exposure time
can automatically be calculated. Press "C" (standing for Change

filter) and answer the prompts for "Filter #1" and "Filter #2".
(DKRM4 will only ask for filter #2, since it automatically keeps
track of filter #1.) A new exposure time will be calculated based on

the time already stored in R04.

7) To view the current FIX-WASH scoreboard, press "D" (for

Display) at any time.

8) To view the current enlarger time and filtration, press "B".

9) After an incredibly productive evening, XEQ e to remove all the

global assignments and return the display to something normal.

Using the RAT

The software supporting the RAT (it's a much more descriptive

term than, say, a MOUSE) allows you to measure different aspects

of the negative and calculate the proper exposure and filtration in

different ways.

10) Turn the enlarger lamp on by pressing the FOCus (the +) key

once. (Clicking once on the RAT's button does the same thing.)

11) By making one reading on a portion of the negative that is the

equivalent to 18% grey, the 41 will calculate the proper exposure.

12) By making two readings on the lightest and darkest portions of

the negative, the 41 will determine the negative's density range

and recommend a polycontrast filter to match the paper's range

85

Control The World with HP-IL

with that of the negative. The exposure is calculated based on the
midpoint between the measured spots.

13) By making three (or more) readings on the lightest, darkest,
and "18%-est" areas of the negative (in any order), the 41 will

recommend a polycontrast filter number based on the negative's
extremes, and an exposure based on the average of all readings.

14) After all the readings are taken, hit the FOCus button to shut
off the enlarger and startthe calculations going. The new

exposure time and filtration are then prominently displayed.

Phase II Software

Here's the software. As always, barcode for this program can be
found in Appendix A, pg. 277.

01*LBL "DKRM4" 23 61 45 X<=Y?

02 " <O 40 +0 +" 24 PASN 46 XEQ 03

03 RCL M 25 "MAN" 47 RDN

04 STO d 26 71 48 “"A~AALM

05 7 27 PASN 49 XYZALM

06 BSIZEX 28 "AUTO" 50 CLST

07 0 29 81 51 RCL 01

08 PT= 30 PASN 52 .07

09 130 31 "ADJ" 53 HMS+

10 X-BUF 32 51 54 24

11 1 33 PASN 55 X<=Y?

12 LAD 34 ~REG 05 56 XEQ 03

13 0 35 CLRG 57 RDN

14 DDL 36 GTO D 58 "~MA2"

15 1 37*LBL 20 59 XYZALM

16 OUTBUFX 38 RTN 60 E

17 UNL 39 CLST 61 ST+ 02

18 3 40 TIME 62*LBL D

19 ENTER" 41 STO 01 63 FIX O

20 64 42 .0215 64 CF 21

21 WREG 43 HMS+ 65 SF 18

22 "FOC" 44 24 66 CF 22

86

Darkroom Controller

67 CF 29 93 / 119 CLA
68 " v 94 RCL 04 120 ATIME24

69 ARCL 02 95 HR 121 "> | #"

70 "> | FX. " 96 * 122 FIX 1
71 ARCL 03 97 HMS 123 ARCL 00

72 "> | WSH" 98 STO 04 124 ASHF

73 AVIEW 99 GTO B 125 32

74 AUTOIO 100*LBL 03 126 X-AL

75 GTO 20 101 MOD 127 CF 21

76*LBL C 102 TIME 128 AVIEW

77 "FILTER #2°?2" 103 INT 129 SF 21

78 PROMPT 104 X=07? 130 CF 22

79 RCL 00 105 RTN 131 AUTOIO

80 2 106 RDN 132 RTN

81 * 107 DATE 133*LBL "Al"

82 10 108 E 134 E

83 + 109 DATE+ 135 ST- 02

84 XEQ IND X 110 X<>Y 136 ST+ 03

85 RCL Z 111 . 137 RDN

86 2 112 RTN 138 XEQ "T1"

87 * 113*LBL B 139 PSE

88 10 114 XEQ 04 140 XEQ "T1"

89 + 115 GTO 20 141 PSE

90 XEQ IND X 116*LBL 04 142 XEQ "T1"

91 X<>Y 117 FIX 6 143 FS? 03

92 RDN 118 RCL 04 144 RTN

And now, a walk-through of the Darkroom

Controller's use.

 >
Follow these simple steps for

faster, easier printing!

Control The World with HP-IL

145 GTO D 168 STO 04 191 GTO 20

146*LBL "A2" 169 CF 22 192*LBL "FOC"

147 E 170 ALMNOW 193 MANIO

148 ST- 03 171 GTO D 194 SF 21

149 RDN 172*LBL 08 195 SF 18

150 TONE 6 173 "O +i0 +O +O +" 196 FS? 08
151 PSE 174 X<> M 197 GTO 05

152 TONE 6 175 X<> ¢ 198 32

153 PSE 176 ALMNOW 199 ACCHR

154 TONE 6 177 X<> ¢ 200 AUTOIO

155 FS? 03 178 SF 21 201 3

156 RTN 179 . 202 ENTER"

157 GTO D 180 STOPSW 203 64

158*LBL "MAN" 181 SETSW 204 WREG

159 MANIO 182 32 205 CL~

160 SF 21 183 ACCHR 206 " FOCUS™

161 CF 18 184 TONE 87 207 CF 21

162 FC2C 02 185 RUNSW 208 AVIEW

163 GTO 08 186 SF 02 209 SF 08

164 . 187 CF 21 210 GTO 20

165 ACCHR 188 " MANUAL"™ 211*LBL 05

166 TONE 87 189 AVIEW 212

167 RCLSW 190 SF 21 213 ACCHR

Step 1 Hit the FOCus key and focus as usual.

214

215

216

217

218

219*LBL

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

Darkroom Controller

CF 08

RCL 10

X=07?

GTO D

GTO 22

"AUTO"

MANIO

SF 21

CF 18

FS?C 22

XEQ 09

"0 +i0 O +O +"

X<> M

X<> ¢

ALMNOW

X<> ¢

SE 03

SF 21

32

ACCHR

TONE 87

"ANCEQFE

TIME

237

238

RCL 04

HMS+

239 5 E-5

240 HMS-

241 +

242 CLST

243 LASTX

244 24

245 X<=Y?

246 XEQ 03

247 RDN

248 XYZALM

249 ALMNOW

250 GTO B

251*LBL "EOFF"

252 MANIO

253 SF 21

254

255 ACCHR

256 TONE 87

257 CF 03

258 GTO D

259*LBL 09

a contrast filter and exposure time.

260 E4

261 /

262 STO 04

263 RTN

264*LBL

265 E4

266 /

267 RCL 04

268 HMS+

269 STO 04

270 GTO B

271*LBL 10

272 0

273 STO 00

274 RDN

275 500

276 RTN

277*LBL 12

278 1

279 STO 00

280 RDN

281 250

282 RTN

Step 2 Using the RAT,take density readings of the brightest, darkest,
and "18% grey-est" areas of your negative. The 41 will recommend

YADJ"

89

283*LBL

284 1.5

285 STO

286 RDN

287 400

288 RTN

289*LBL

290 2

291 STO

292 RDN

293 320

294 RTN

295*LBL

296 2.5

297 STO

298 RDN

299 320

300 RTN

301*LBL

302 3

303 STO

304 RDN

305 250

13

00

14

00

15

00

16

00

Control The World with HP-IL

306 RTN

307*LBL 17

308 3.5

309 STO 00

310 RDN

311 100

312 RTN

313*LBL 18

314 4

315 STO 00

316 RDN

317 80

318 RTN

319*LBL 22

320 MEAN

321 XEQ 31

322 RCL 10

323 1

324 X=Y?

325 GTO B

326 RCL 11

327 RCL 12

328 XEQ 32

329 GTO B

330*LBL 31

331

332

333

334

335

336

337

XEQ "EXPOSUR"
1 E4
/
STO 04

STO 00

RTN

338*LBL 32

339

340

341

342

343

344

345

346

347

348

349

XEQ 33

500

X<>Y

/
RCL 04

HR
*

HMS

STO 04

RTN

350*LBL 33

351 95

Step 3 With paper in the easel and filter in place, press
AUTO to automatically expose for the recommended time.

90

Darkroom Controller

352 X<=Y7? 375 GTO 18 398 CL~

353 GTO 12 376*LBL e 399 1 E9

354 RDN 377 CLA 400 STO 12

355 85 378 61 401 .

356 X<=Y? 379 PASN 402 STO 11

357 GTO 13 380 71 403 AUTOIO

358 RDN 381 PASN 404 RTN

359 75 382 81 405*LBL 02

360 X<=Y? 383 PASN 406 1

361 GTO 14 384 51 407 TAD

362 RDN 385 PASN 408 INBUFX

363 65 386 FIX 4 409 UNT

364 X<=Y? 387 CLST 410 BUF-XB

365 GTO 15 388 RTN 411 INSTAT

366 RDN 389*LBL "INTR" 412 RDN

367 55 390 CLD 413 FS? 01

368 X<=Y? 391 FS? 08 414 GTO 02

369 GTO 16 392 GTO 02 415 CF 00

370 RDN 393 MANIO 416 128

371 45 394 SF 21 417 X<>Y

372 X<=Y? 395 32 418 X=Y?

373 GTO 17 396 ACCHR 419 GTO 37

374 RDN 397 SF 08 420 255

Step 4 Develop the print in the usual manner. Hit the R/S key

when it gets to the fixer. The 41 will log the print and keep

track of it from here.

91

92

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

I Control The World with HP-IL

X<>Y
X=Y?
GTO 37

TONE 89

RCL 11
X<>Y
X>Y?
STO 11

RCL 12
X<>Y
X<Y?

STO 12

ENTER"
~+
RDN
RTN

437*LBL 37

438

439

440

441

442

443

TONE 13

CF 21

" TRY AGAIN"

AVIEW

SF 21

RTN

444*1LBL

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

TONE

TONE

TONE

TONE

TONE

TONE

TONE

TONE

TONE

TONE

TONE

TONE

TONE

TONE

TONE

TONE

TONE

RTN

463*LBL

464

465

-2.9

YX

IlTlll

89

89

89

89

89

89

89

89

89

89

89

89

89

89

89

89

89

"EXPOSUR"

466 537933.4

467 *

468 END

Step 5 Goabout your business. The 41 will
‘chirp’ when it's time to move the print to the
wash, and later 'beep' when it's time to hang it
up to dry. This system will keep track of as

many photos in process as you have memory.

Darkroom Controller

Analysis:

LINES 1-36
Generalinitialization. All system flags are set synthetically
in lines 2-4. The I/O buffer required by the IL Development
ROM is set up in lines 6-8. Lines 9-17 configure the GPIO's
first control register (RO) to flag a service request whenever
there's data in the buffer. Lines 18-21 configure the 41's IL
chip to send out IDYs when idle (see Chapter 6 for how
service request and IDYs work.), and finally lines 22-33
assign the global labels necessary for use.

LINES 37-61
Flow control always returns to LBL 20 and stops. Pressing

R/S after a print has entered the fixer automatically
continues execution, and sets up 2 interrupting alarms: one

for 2 minutes 15 seconds in the future (line 42), the other for 7

(line 52). Other checking is done (at LBL 03) in case the
current time is close to midnight and the prints may have to
be moved tomorrow. (You can tell my usual darkroom

hours!) Lines 60-61 increment Register 2, which keeps track

of the number of prints in the fixer.

Step 6 Examine the print. If desired, usethe system's features to

tweak the exposur e or change the filter with ANSI speed
compensation.

93

Control The World with HP-IL

LINES 62-75
LBL D (for Display) can be called from the keyboard as well

as other subroutines. This simply displays the number of
prints in each bath, as kept track of by regs. 02 and 03.

LINES 76-99
LBL C stands for Change filter, and calculates the new
exposure value when changing polycontrast printing filters.
The ANSI paper speeds have been stored at labels 10-18,

which are moved into the X register at lines 84 and 99, "XEQ
IND X". The old time is multiplied by the ratio of these 2
numbers and stored away into R04 in H.MS format, ready for
action by hitting "AUTO". (/ key.) Calling LBL B displays the
current time and filter number, so it may be recorded for

future use.

LINES 100-112
Called by the alarm setting routine (LBL 20) when the alarm

has to go off after 12:00 midnight. This subroutine advances
the date and returns with the stack contents in the proper
places.

Step 7 When finished, be proud of your results which were
produced using a minimum number of steps!

Darkroom Controller

LINES113-132
LBL B calls LBL 04, and the two have been separated because

calling routines need control passed back and finger

execution (pressing the "B" button) does not. LBL 4 simply

displays the current enlarger time stored in R04 and the

current filter number stored in R0O0.

LINES 133-145
LBL Al is the "warning" program called by the first alarm,

telling the user that it's time to move a print from the fix to
the wash. After decrementing R0O2 and incrementing RO03
(reflecting the fact that a print is to be moved), the audible
chirping routine "T1" is called 3 times, and then the

fix-wash scoreboard is displayed (GTO D).

LINES 146-157
This is another warning routine called by the second alarm.

RO3 (the number of prints in the wash) is decremented and 3

TONE 6's are sounded, telling the user to remove the print

from the wash and hang it up to dry. The new scoreboard is

displayed (GTO D).

LINES 158-191
This is the MANual routine, called when the * key is

pressed. It simply turns the enlarger on and measures the

time elapsed until the * key is hit again. First, flag 2 is

checked. Ifit is clear, then the enlargeris off and we branch

to the 'on' routine, LBL 08. Otherwise, the enlarger is shut

off (lines 164-165), the stopwatch time is stored in R04, the

suspended alarms are re-activated (ALMNOW) and we

return. LBL 08 starts off by synthetically suspending all

alarms via lines 173-177 so there's no potential for

interruption. The stopwatch is reset and started, the

enlarger is turned on, flag 2 is set showing the MANual

operation has started, and we GTO 20, the standard waiting

spot.

LINES 192-210
LBL FOCus does the same job as MANual except no timing

95

Control The World with HP-IL

takes place. First, flag 8 (indicating if this is the OFF cycle
rather than the ON cycle) is checked; if it is we GTO 05 and
shut it off, otherwise the enlarger is turned on. Lines 201-204

reset the IL Module for automatic IDYs (in case the 41 was

turned off since the program was initialized). The statistical
registers are cleared, the word "FOCUS" is displayed, and
we wait.

LINES 211-218
In LBL 05, we try to determine what was done with the

"RAT" while FOCus mode was on. First, the enlarger lamp
is shut off, flag 8 is cleared, and then R10 is checked for how

many A/D readings were taken. If R10=0 (no readings), we

exit. Otherwise, we go on to LBL 22 for further processing.

LINES 219-250
This is not a toggle function. AUTOmatic takes the time
stored in R04 and turns the enlarger on for exactly that

duration. First, flag 22 is checked to see if an overriding
duration was manually punched into the X register. If it
was, that time is stored into R4 and implemented. Either

way, the pending alarms are synthetically suspended (lines
225-229) and the enlarger is turned on. Lines 235-248 then set

an interrupting alarm that will turn the enlarger off. (Lines

239-240 subtract a small amount of time to compensate for

the time it takes to set the alarm, thus guaranteeing a

true-to-request duration.) Line 249 lastly restores all the

suspended alarms, so audible reminders can still occur

during a critically timed exposure.

LINES 251-258
This is the routine we branch to when the alarm set in the

AUTO function comes due. It simply turns the enlarger off

(254-255), clears flag 3 indicating AUTO mode has been

terminated, and exits.

LINES 264-270
The ADJust function (the "-" key) takes the number of

seconds in the X register, converts it into the proper format

and adds it to the normal time stored in R04.

Darkroom Controller

Inside the controller is an IL Converter andasmall, unregulated

power supply. A5v regulator was addedto protect the circuitry.

The front panel (bottom) contains the IL receptacle, 3-pin

miniature phone jack for the RAT, and a master power switch. The

enlarger plugs into an AC receptacle mounted on top of the case (not

shown).

LINES 271-318
Eight subroutines used when calculating new exposure

times for filtration changes. Each label first stores its

respective filter number in R00, drops the stack, and puts its

effective ANSI paper speed into the X register and returns.

LBL 10 represents the enlarger without a filter; LBLs 12-18

accommodate the seven filters, from #1 through #4 (in

half-steps).

LINES 319-337
If at least one reading was taken with the RAT, we end up

here. The exposure is determined by taking the average of

all the readings and XEQing 31, which converts it to the

number of seconds and stores it into R04. If only one reading

was taken (lines 323-325) that's all we can do; otherwise the

contrast range is computed by recalling the highest and the

97

Control The World with HP-IL

lowest values read (stored in R11 and R12 respectively) and
XEQing 32.

LINES 338-349
The required filter value is determined by taking the
difference between the highest and lowest values read and

XEQing 33, which is a look-up table. This subroutine
changes the filter value in R00 and returns with the ANSI
paper speed in the X register. Lines 341-348 then calculate
the new exposure time required when using this new filter

by taking the old time (R04) and multiplying it by the ratio of
the old and new paper speeds.

LINES 350-375
LBL 33 is a look-up table which takes the range of RAT
readings as input and compares it against the arbitrary

thresholds defined earlier. If the number is within a given
range it branches to one of the eight filter subroutines in
lines 271-318.

LINES 376-388
This is an odd place for a "cleanup” subroutine, but that's

precisely what LBL e does. Upon completion of a darkroom

session, this routine gets rid of all the global labels and

"FIXes" the display.

LINES 389-404
This is the interrupt routine jumped to every time the RAT

button is pressed. Firstflag 08is checked to see if the

enlarger has already been turned on via the FOCus routine.

If not, the enlarger is turned on and various registers are set

up: the sigma registers are cleared (line 398), a high number

is stored in R12, a low number is stored in R11, and flag 8 is

set so next time the button is pressed a reading will be taken.

LINES 405-436
The number is read from the A/D Converter here. The GPIO

is made a talker, a byte is transferred to the buffer and then

to the X register, and the GPIO is immediately queried to see

if more data awaits. If there is it was probably due to switch

98

Darkroom Controller

bounce, so we disregard the old value and start again. (Lines

411-414.) We then check for "bad" values: if the number just

read was either 128 or 255, it was probably an error and we
branch to LBL 37 to handle it. By the time we get to line 424,
the number is valid and a happy-sounding TONE 89 is issued
for feedback. The remainder of the routine (lines 425-436)
tests the number to see if it's either the lowest or highest
value read so far, and then "sigma-plus"es it. The reading
value is retained in the X register in case some other routine
needs it.

LINES 437-443
The most complex error-handling routine in existence.

Simply sounds a low negative-reinforcement tone, displays

"TRY AGAIN", and exits.

LINES 444-462
This is the "chirp" sound used to give audible warning of a

print that needs to be moved from the fixer to the wash. It is

comprised of a string of TONE 89s, and is called three times

from the "Al" interrupting alarm.

LINES 463-468
This subroutine will be different for every user. It consists of

the equation that was derived in step 4, Determine the

Exposure Curve.

Software Techniques

There are 2 significant techniques used in DKRM4 that warrant

discussion. The first is the suspension of alarms in the ALMCAT,

and the second deals with a no-overhead way of responding quickly

to an event on the loop, such as someone pressing the button on the

RAT.
Since the AUTO function is designed to reproduce a previous

enlarger time EXACTLY, any alarms activating during an

exposure run the risk of altering that time, since the 41 may be

busy handling the interrupt rather than shutting off the enlarger.

99

Control The World with HP-IL

To insure repeatable results, it is important to guarantee that no
such interruptions occur.

One method for doing so is to fool the time module into thinking
that there aren't any alarms. Using synthetics,it is possible to
move the program/data divider, called a curtain, past the buffer
area where alarms are normally kept, so the time module doesn't
see them. Performing an ALMNOW in this condition tells the 41
"Look Ma! No alarms!" and makes it safe to move the curtain back
without fear of the alarms activating. Other time-crucial activities
can now be performed safely, and as soon as you are done another
ALMNOW will force the 41 to examine the alarm buffer and make
it realize that "Whoa! There are alarms here after all!" and they
will start to activate in sequence. The first 5 lines of LBL 08 (line
172) shows the instructions required to do this. [For further details
on this technique, refer to reference 2.]

Another thing I consider to be "really neat" about this
application is that while the calculator's sitting idle and not
running a program, I can grab the "RAT", press the button, and
the 41 will suddenly start to execute a program! (Recall that in
Chapter 1 it was pointed out that in order for the 41 to respond to
any outside activity, a running program must continually look for
the event. This has the side effect of slowing everything else down
while at the same time increasing battery consumption
significantly.)

To nullify this problem a neat little trick was used, and I shall
now offer a quick demonstration of how it works. Take a 41, an IL
Development ROM, and the 82162A IL Thermal printer and enter
this initializing program:

01 LBL "SETUP"

02 55 09 WREG

03 FS? 55 10 3

04 XROM IF 11 ENTER

05 SF 18 12 64

06 0O 13 WREG

07 ENTER 14 END

08 64

and this routine:

100

Darkroom Controller

01 LBL "INTR"

02 BEEP

03 IDY

04 END

Now run the SETUP program, and press either the 'Print’ or

‘Paper Advance' keys and hear a BEEP. Congratulations! You've

just reassigned the printer keys!

Well, actually the keys weren't reassigned at all; rather the

microprocessor in the 41's IL Module was told to constantly search

the loop for devices that "needed attention" (set the service request

flag on a passing message frame). If one is found, and if the 41

isn't running a program, a program named "INTR" is run. This

feature is mentioned (slightly) in the Development ROM's User

Manual, Section 2 and Appendix C.

More Details

Using the WREG (Write Register) command in the DevIL ROM,

it is possible to access certain registers of the HP-IL chip. In the

above example, the chip was told to constantly send an IDY

(Identify) message around the loop. If any loop device needs

service (i.e., if a printer button is pressed), it alters the IDY

message slightly and passes it on.

As you probably know, the IL Module performs its error

checking by comparing the messages returning from the loop with

those sent. Once the setup routine above has been run, every time

a message comes back that is different from the one sent, the 41

runs a program called INTR (Interrupt), which will determine the

cause of the interrupt and perform some specified function.

This means that INTR will start to run under the following

conditions:

1) The 41 is in idle mode (CLOCK or programs not running)

AND

101

Control The World with HP-IL

2a) A transmission error has occurred (a frame came back

not-as-sent), OR

2b) ANY device on the loop has requested service by altering the
IDY message.

After determining the cause, INTR can then perform any
routine or function, and then return back to idle mode once again.

(Service Requests are covered more thoroughly in Chapter 6.)

In the general case, the interrupt handling routine should look
more like this:

01 LBL "INTR"

02 FRNS?

03 RFRM

04 INSTAT

05 FS? 01

06 BEEP

07 FS? 02

08 TONE 7

09 IDY

10 END

Lines 2 and 3 check for the transmission error (Frame Received

Not as Sent?) and reads the frame (RFRM) to clear the error. The
rest of the program checks a status word from the printer to

determine which button was pressed. That way, each button can
perform a different function. The disadvantage here is the button
must be held down to both generate an interrupt and be recognized
through INSTAT.

In the DKRM4 program, not much of this extra checking is

performed since the loop configuration is known. As soon as an

interrupt occurs, it simply turns the enlarger on (f it isn't on

already), reads an A/D value from the IL Converter, and goes back

to being idle.

The technique does have some undocumented restrictions,

however. For starters, the 41 must be in AUTOIO mode and flag

44 (the continuous ON flag) must NOT be set. You must not be in

PRGM mode when the interrupt occurs, and your program pointer

must not be in ROM. When trying the above printer example make

102

Darkroom Controller

sure flag 55 is clear, otherwise PRX will appear in the display

rather than cause an interrupt.

Conclusion

This darkroom application is only an example. This chapter is
really about how a basic analog to digital converter works and how
to tailor it to your needs. It also serves to give an excellent

philosophical example of what computers ought to be used for:
relieving users of the 'dog work' and leaving them free to

concentrate on the creative matters.

The Gary Friedman Company

HP-41

B2147A

'h-mmwwwmhvw‘.

References

"Quality Enlarging with Kodak B&W Papers"”, Eastman Kodak Co.

1982

"Suspending Alarms" Tapani Tarvainen, PPC Journal, August

1983

103

104

Control The World with HP-IL

Chapter Five

SPEECH SYNTHESIS

"The HP-IL system exemplifies the phrase ‘What Goes Around,

Comes Around'".

--Clifford Stern

I've always been a fan of synthetic speech, so when the
opportunity came a few years ago to actually make a portable

system, I jumped at the chance and built what was at the time the

smallest speech development system known. This chapter
describes that system, discusses some unusual interfacing

requirements, and gives several examples of programming (and

even some singing!) using a single speech synthesis I.C.

Most people are probably familiar with computers that can talk,

but few bother to make the distinction between two very different

approaches to computer speech: digitized and synthesized.

Digitized speech works much like a tape recorder. It starts with a

human speaking into a microphone, but instead of being stored on

magnetic media, it is digitized, analyzed, homogenized,

mathematically compressed and stored in computer memory. The

inverse of this process is employed to retrieve the information and

"play it back”. Because it starts with a human source, digitized

speech is famous for sounding very much like a human. The price

paid for this, however, is the large amount of data needed to

represent the voice, its qualities, and inflections. Data

compression can help reduce that amount by extracting only the

"characteristic features" and compressing that data to fit into a

small space, but the voice quality becomes heavily degraded as a

result.

105

Control The World with HP-IL

The other method, synthetic speech, doesn't start with a human
voice at all. Using Fourier analysis, all the different sounds of the

English language are recorded, reduced to mathematical
equations, and simulated by digital filter techniques. The result is
that any combination of English language sounds can be strung
together to make words and phrases from relatively little data,
giving the unit an unlimited vocabulary without the usual large
amount of memory! Synthetic speech, unfortunately, also has its
drawbacks: it very often talks with a very heavy Swedish-sounding
accent.

The Votrax Co., a division of Federal Screw Works (I'm not

kidding!) has been one of the early pioneers in synthetic speech for
personal computers as well as mainframes. Their offering is the

SC-01 chip, a primitive sounding (by today's standards, anyway)
phoneme-based chip that represents a mathematical model of a

human vocal tract.

Votrax has broken the English language up into 64 different

sounds, or phonemes, all of which are illustrated in Fig. 5-1.

These phonemes consist of vowels, consonants, blends,

combinations, and "no-sounds". You can have the speech chip say
any one of these phonemes by putting its respective address onto

the chip's address bus and grounding the chip's STB (Strobe) line

momentarily. If you took a whole bunch of these phonemes and

fed them in one at a time very quickly, you might hear something

that sounds like a word. For example, to say "Thank you", you

should feed the chip the following sequence of addresses:

PHONEME

SYMBOL: TH Al Y N K - Y U W -

PHONEME CODE

(ADDRESS) : 57 6 41 13 25 3 41 40 45 3

It would seem a natural that, given this chip's 8-bit bus

interface, both the 41 and 71 oughtto be talking.

106

Speech Synthesis

ADDRESS DURATION (ms) ADDRESS DURATION (ms)

SYMBOL SAMPLE WORD SYMBOL SAMPLE WORD

00 EH3 59 Jjacket 32 A 185 day

01 EH2 71 enlist 33 AY 65 day

02 EH1 121 heavy 34 Yl 80 yvard

03 PAO 47 (--) 35 UH3 47 mission

04 DT 47 butter 36 AH 250 mop

05 A2 71 made 37 P 103 past

06 Al 103 made 38 0o 185 cold

07 ZH 90 azure 39 I 185 pin

08 AH2 71 honest 40 U 185 move

09 I3 55 inhibit 41 Y 103 any

10 12 80 inhibit 42 T 71 tap

11 I1 121 inhibit 43 R 90 red

12 M 103 mat 44 E 105 meet

13 N 80 sun 45 W 80 win

14 B 71 bag 46 AE 185 dad

15 v 71 van 47 AE1l 103 after

16 CH(*) 71 chip 48 AW2 90 salty

17 SH 121 shop 49 UH2 71 about

18 Z 71 z00 50 UH1 103 uncle

19 AWl 146 lawful 51 UH 185 cup

20 NG 121 thing 52 02 80 for

21 AH1 146 father 53 o1l 121 aboard

22 001 103 looking 54 IU 59

23 00 185 book 55 Ul 90 you

24 L 103 land 56 THV 80 the

25 K 80 trick 57 TH 71 thin

26 J(*) 47 judge 58 ER 146 bird

27 H 71 hello 59 EH 185 get

28 G 71 get 60 E1l 121 be

29 F 103 fast 61 AW 250 call

30 D 55 paid 62 PAl 185 (-=)

31 S 90 pass 63 STOP 47 (--)

x wrv must precede "CH" to produce CH sound.

* wD" must precede "J" to produce J sound.

Figure 5-1

Phoneme Chart

107

Control The World with HP-IL

Sv

Regulator

i

L 1 Amp.
- -

Qv

.—LE /’ 1KQ
1WF 4.7kQ A1 22 .4 20 o SOV no 22 I

DB7 74C373 S— e AF 1=
pes —3{ Lateh {234 BA% $i7ka 0orT § 330KQ

10][11 g 0. 7 oK [
>Hres anp 18
6 17 3= Ote2 TP O 3 330KQ

DAV 7 STB MCRC 16 [

DAC|—4<]—§E A/R McX gj_—:j -4
3 D%# P5 PO :IT DBO = 5o00F

DB4

—

10P4 Pt 51— oas P
DB3 —{]P3 P2 [1——— DB2

RDYI—_L

Figure 5-2
Diagram of
Speech Synthesizer
and Low-Pass Filter

The Circuit

Figure 5-2 shows a method of hooking up the speech chip to the

IL Converter. Since this chip was designed to interface with a
microprocessor bus, no separate latch is needed. The 74C373 8-bit

latch pictured is used instead to facilitate inflection, which we will

cover later. There is an amplifier attached to the SC-01's 2 output

pins; this can consist of a tape recorder with an Auxiliary input

and Monitor mode. Alternatively, there also exist several

self-contained low-fidelity modules available from local electronics
stores; one such module has been included in the figure along with
a low-pass filter to increase the sound quality at moderate-to-high

volumes.
The values of the resistors and capacitors determine the

108

Speech Synthesis

reference frequency needed to generate intelligible speech, and the

valid passband is very narrow. (Putting your finger across the 220
pF capacitor, for example, is enough to slow it down to the point

where it starts doing its H.A.L. 9000 impersonation.) These values
are not crucial; the only sensitive ones are those that are attached
to pins 15 and 16. In general, the values for these parts should be

chosen so that

1
=7,000

R X
total

where R is the resistance in Ohms and C is the capacitance in
Farads. Most people hooking up a speech chip for the first time
have a great deal of trouble just getting it to say "Ahhhh", because
finding the correct resistor/capacitor combination to fulfill its
narrow tolerances can be difficult without pulse counters,

capacitance meters, etc. Don't worry; use variable resistors and

try lots of similarly-rated capacitors (they tend to deviate from the

marked value the most) and it shouldn't take more than a day to

hear a sound.

I decided that futuristic packaging is the way to go, so I took two
clear audio cassette cases, glued them back to back, and had

enough room inside to fit all the necessary components: an IL

Converter (minus its case), amplifier, speaker, 9v battery (and

therefore 5v regulator to get the voltage down to a non-destructive
level), speech chip and its interface ICs.

How to Drive it with Software

So how do we get this thing to talk? Let's try it with the 41:

DO COMMENTS

MANIO We're not talking to a printer.

5 ACCHR Hear "A"

60 ACCHR Hear "E"

3 ACCHR No sound.

109

Control The World with HP-IL

As a second example, fill the alpha register with this string (refer
to Chapter 1 if you forgot how), SF 17, and OUTA:

H EH1 L O W - "HELLO"

Notice that the last phoneme was a "stop", which keeps the speech
chip from making the "W" sound forever. Some other interesting

phrases it can say are:

"Hewlett Packard":

H Y Ul L EH1 T -

27 41 55 24 2 42 3

P AE K ER D -

37 46 25 58 30 3

"Shall we play a game?"

SH AE L - W El Y -

17 46 24 3 45 60 41 3

P L AE Y - A Y -

37 24 46 41 3 32 41 3

G Al AY Y M -

28 6 33 41 12 3

Adding Inflection

This all sounds hopelessly monotone, making this an ideal time

to introduce the inflection concept. The SC-01 chip was designed to

operate on 8-bit machines, allowing a byte to be broken down as

follows:

110

Speech Synthesis

/ \
INFLECTION PHONEME

The two most significant bits determine the pitch, or inflection, at
which the phoneme is spoken. The greater the inflection bits, the

higher the pitch. Therefore, if you wish to increase the pitch of any

phoneme, simply add multiples of 64 to the phoneme's address.
For example, to hear it sing "A" in 4 musical keys:

DO COMMENTS

MANIO

5 ACCHR Inflection level =0

5 + 64 = 69 ACCHR Inflection level =1

69 + 64 =133 ACCHR Inflection level =2

133 + 64 =197 ACCHR Inflection level =3

3 ACCHR Stop

Adding inflection levels to your speech can make it much more

intelligible. For example, we can make "Shall we play a game?"

sound more like a question:

SH AE L - W El Y -

17 46 24 3 45 60 41 3

101 88 110 105 67 32 41 3

G Al AY Y M -

28 6 97 105 76 131

What a difference! Notice that inflection was added to the STOP

111

Control The World with HP-IL

phoneme as well. Although STOP doesn't produce any sound, its
inflection will determine how the previous phoneme will end. In
this example, it is responsible for the question-like quality at the
end of game?

Here are some other examples:

"Go ahead...Make my day!"

G 001 o1 - UH1 H EH1 EH3 D -
28 22 53 3 50 27 2 64 94 3

M Al AY Y K - M AH1 EH3 Y -
76 70 97 105 89 67 176 85 64 105 67

D Al I3 Y -

94 70 137 105 3

"Happy Birthday to you....":

H AEl EH3 P Yy -
91 111 64 101 105 67

B ER R TH D Al I3 Y -
78 186 107 121 94 6 9 41 3

T Ul Ul Ul Ul -= Y Ul Ul Ul Ul -
(1st Time)

170 183 183 183 183 131 105 119 119 119 119 67
(2nd Time)

234 247 247 247 247 195 169 183 183 183 183 131

"Starbase Operations":

S T AH1 R B A2 AY S -
95 106 85 107 78 69 97 95 67

AH1 P ER A2 AY SH UH3 N S -
85 101 122 69 97 81 35 13 31 3

112

Speech Synthesis

The latter phrase, from the beginning of a two-part Star Trek
episode, sounds best when programmed into a loop and played

back while adjusting the potentiometer in Fig. 5-2 to extremes.

10 Point Mystery Phrase

76, 85,105, 67, 229, 235, 230, 92,107,175, 140, 122, 67.
170,176,176,170,131, 76,108, 67,106,119,119, 67.
159,138,138,141,156,131, 96, 97, 67, 223,176,176, 141,156, 131.
94, 96, 33,15, 3, PSE
109, 86, 94, 67, 34, 55, 55, 3, 88, 72,105, 89, 67.
42, 55,55, 3,91,108,107, 67, 39,170,131. PSE
180, 180,183,131, 25, 32, 33, 3. PSE
222, 224, 224, 224, 224, 225, 210,172,172,172,131.
94, 96, 96, 96, 96, 97, 82, 44, 44, 44, 3.
92,75,73,79, 67,140,188,169, 131, 233, 244, 244, 235,195.
111,111,111, 64, 77, 95,186,131, 30, 40, 40, 40, 3.

NOTE: For the most accurate reproduction, one should hold two

fingers across the 220pf capacitor's leads while the above mystery

phrase is being played.

A moment to reflect. The 41, to begin with, is slow. Not helping

the situation any is the fact that the SC-01 chip uses only one line

for handshaking, while the GPIO likes to use two. If this leftover

handshake line (RDYI = Ready Data In) is tied to ground instead,
data flow to the chip will occur but with the following drawback:

the GPIO's 32 register transfer buffer is disabled; so after an

OUTA is executed, program control will not be returned until the

speech chip says the last phoneme.

Because of this, when long speeches (such as the 10 point

Mystery Phrase) are spoken, the alpha register must load and

output groups of 24 phonemes quickly if noticeable gaps in speech

are not to occur. This necessitates the use of synthetic text lines on

the 41 for speedy alpha filling. (A doubled clock speed on said

machine also helps considerably.) The only problem with this

method is that EH3 (address = 0) will not be sent with an OUTA

113

Control The World with HP-IL

because it is interpreted as a null. EH1 or EH2 should suffice as a
substitute.

Unfortunately, these speed problems also hold true for the 71:
Since the buffer is bypassed, program execution will not continue
until the entire phrase is spoken. Slowness on this machine,
though, should be much less noticeable.

Sending text strings on the 71 is a much easier task and can be
done in this fashion:

10 A = DEVADDR("%64")
20 SEND UNT UNL MTA LISTEN A
30 SEND DATA 91,111,64,101,105,67,78,186,107,121,94,6,9,41,3
40 SEND DATA 170,183,183,183,183,131,105,119,119,119,119,67
50 SEND DATA 91,111,64,101,105,67,78,186,107,121,94,6,9,41,3
60 SEND DATA 234,247,247,247,247,195,169,183,183,183,183,131
70 SEND UNT UNL

This short program has it sing "Happy Birthday". The equivalent
program on the 41 looks like this:

01*LBL "HAPPY" 10 LN

02 SF 17 11 E~X

03 "[oReiCN+ky™++)+" 12 "[0QeiCN+ky™++) +"

04 OUTA 13 OUTA
05 "++++++++iwwwwC" 14 "4+ttt

06 OUTA 15 OUTA
07 5 16 PSE

08 LN 17 GTO "HAPPY"

09 E™X 18 END

(The bytes for the four synthetic text lines can be found in lines

30-60 of the 71 program above.) Barcode for "HAPPY" and other

phrases appears on page 282.

For those of you who prefer thinking software, the program on

the next page is designed to recite the correct time. It requires a

time module and an XF/M module with the following ASCII file

named "TIME" loaded into it, which contains the necessary

vocabulary. First, the program (Barcode is provided on page 284):

114

01*LBL

02

03

04

05

06

07

08

"TIMED"

CF 21

TIME

FIX 2

ATIME

AVIEW

STO 01

09*LBL 04

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

RCL 01

INT

12

X<=Y?

SE 05

X<>Y

X>Y?

X=07?

12

"TIME"

SEEKPTA

GETREC

RCL 01

FRC

10
*

ENTER"

INT

X=07

GTO 01

2

X<=Y7?

Speech Synthesis

33

34

35

36

37

38

39

GTO 03

RCL Z

10
*

INT

SEEKPT

ARCLREC

40*LBL 02

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

SEF 17

ouTA

FS? 05

"elCH+++"

FC?2C 05

" aCAA++"

OUTA

DATE

DOW

FS?C 08

XEQ 05

24
+

SEEKPT

GETREC

SEF 17

OUTA

RTN

59*LBL 01

60

61

62

63

64

Synthetic Text Lines:

RDN

10

*

INT

X=07?

44: 101,108,67,129,129,12,3

46: 96,97,67,65,65,12,3

65 GTO 02

66 0

67 SEEKPT

68 ARCLREC

69 X<>Y

70 SEEKPT

71 ARCLREC

72 GTO 02

73*LBL 03

74 RDN

75 18

76 +

77 SEEKPT

78 ARCLREC

79 RDN

80 FRC

81 10

82 *

83 INT

84 X=07

85 GTO 02

86 SEEKPT

87 ARCLREC

88 GTO 02

89*LBL 05

90 RCL 01

91 1 E2

92 *

93 FRC

94 10

95 *

96 END

115

Control The World with HP-IL

ASCII FILE "TIME"

REC. # SAYING ASCII DATA
0 ZERO 18,44,43,53,55,3.
1 ONE 173,178,13,13,3.
2 TWO 170,168,45,3.
3 THREE 185,171,44,41,3.
4 FOUR 157,180,180,43,3.
5 FIVE 29,21,0,9,41,15,3.
6 SIX 31,39,25,31,3.
7 SEVEN 159,130,143,1,13,3.
8 EIGHT 32,33,42,3.
9 NINE 13,21,41,13,3.
10 TEN 106,65,1,13,3.
11 ELEVEN 44,24,66,79,0,2,13,67.
12 TWELVE 42,45,2,24,15,67.
13 THIRTEEN 121,122,106,172,13,3.
14 FOURTEEN 157,117,107,106,172,13,3.
15 FIFTEEN 93,103,93,170,236,13,3.
16 SIXTEEN 95,103,89,95,106,172,13,3.
17 SEVENTEEN 95,66,79,65,77,106,172,13,3.
18 EIGHTEEN 96,97,106,44,13,3.
19 NINETEEN 77,85,105,77,106,44,13,3.
20 TWENTY 106,109,66,77,106,108,41,3.
21 THIRTY 121,122,106,44,41,3.
22 FORTY 157,180,180,43,42,44,41,3.
23 FIFTY 29,39,29,42,4441 ,3.
24 SUNDAY 223,242,227,205,205,158,32,33,3.
25 MONDAY 204,242,227,205,205,158,32,33,3.
2% TUESDAY 170,169,168,146,94,32,33,3.
27 WEDNESDAY 37,194,222,205,223,158,32,33,3.
28 THURSDAY 185,186,171,146,94,32,33,3.
29 FRIDAY 221,235,213,233,94,32,33,3.
30 SATURDAY 223,238,170,58,94,32,33,3.

116

210 Chars. + 31 Regs. +1 _ 345 — 35 Registers

Speech Synthesis

There's only one way to input the "TIME" file: take each of the
above numbers, toss it into ALPHA via XTOA, and at the end of

each line INSREC.
Programs like this can be included in verbal alarm clocks,

which also capitalize on the 41's time module capabilities. And
since the whole setup is programmable, it's not too much trouble to
implement an oversleepers anonymous mode, where the unit
actually gets abusive if the 'snooze' function is called upon too

many times.

In a couple of chapters, we'll use the SC-01 speech chip to greet
your callers in a most sophisticated telephone answering
machine. But that shouldn't stop anyone from coming up with

other practical applications (such as indestructible Trans-Ams

with 4-character acronyms).

117

Control The World with HP-IL

 118

Chapter Six

INTELLIGENT AUTODIALER

"Computers are not intelligent. They only think they are.”

-Anonymous

This chapter and the next may seem to deal with fun things one
can do with telephones, but actually they are a sample of all the

different things that can be done using the few techniques

introduced in previous chapters.
The intelligent autodialer is a device I originally designed out of

my own frustration with our office's telephone system. Dialing

three digits just to get an outside line, then another ten digits for

the number (plus waiting for the Dimension™ system to redial the

number for you) only to find a busy signal got to be very annoying.

This system would always listen in on the line and would know

what number I dialed on the telephone's keypad. If it was busy,

I'd just press a button and the 71 would keep trying the last

number it heard until it broke through. Soon, using exactly the

same hardware, the system grew to include a Rolodex-type phone

directory (where you search for the name and it dials the number),

and a phone usage monitor (where the system keeps a log of all

outgoing calls and their dates and times).

The most useful and unique aspect of this system is its ability to

detect busy signals and automatically redial the number without

human intervention, normally a difficult thing because of the

phone companies' varying representation frequencies and signal

strengths. Among those who will really appreciate this feature

are teenagers who participate in radio station contests that award

a billion dollar prize to the 13th caller!

119

Control The World with HP-IL

First, every individual aspect of the system will be described in

detail, so you can get an understanding of how things interact and

will be able to design systems that meet your own needs, should
you desire to do so. Next, I'll describe the system software and

complete schematics. Finally Chapter 7, using almost identical
techniques, will prove once and for all that the 41 is just as capable

a system driver as its horizontal successor (the 71) by making it do

more things than any calculator should be allowed to do by law.

Telephone Line Interface

This is a sticky topic, but must be addressed since two chapters

rely on it. Before 1955, it was illegal for anyone to attach anything
besides phone company equipment to the phone lines. Two
Supreme Court decisions, the "Hush-A-Phone" case in 1955 and
the Carterfone case in 1968 altered the laws to allow foreign

equipment to be attached to the phone company's lines via an

expensive interface called a coupler. The coupler's stated purpose

was to provide insurance against someone's Chen Fu brand

answering machine vaporizing central office equipment, but the

phone company required it even for machines that were FCC

approved.

Couplers were phased outin the late '70s (as were their

ridiculous surcharge) when the FCC rules were altered in 1975 to

allow direct connection of any FCC-approved device to the phone
lines. Today, in the post-AT+T breakup era, it's suddenly OK to

attach a $10.00 disposable phone without a charge of any kind! (It

must be FCC approved, of course.)

It is still mandatory, however, that any equipment attached to

the phone lines meet these said requirements. Since legitimate

telephone-line interfaces aren't a commonly available off-the-shelf

component, I solved the problem by taking an old telephone and

removing its hybrid transformer, which looks like a rectangular

cube with a wiring block on top. This transformer acts as the

telephone's interface; it takes the two incoming wires from the

central office and splits them into four needed for the mouthpiece

and the earpiece. (See Fig. 6-1.) Best of all, every telephone has

120

Darkroom Controller

this component, so a little bit of scavenging at surplus shops or
garage sales will yield you a perfectly legal and efficient telephone
interface!

Generally, using the "R" contact as a common ground,

telephone audio can be heard through "B", and sounds fed to the
phone line should go through "GN". The terminals normally used
for the dial contacts, "F' and "RR", will answer the phone if
shorted out and hang up if not connected. An opto-isolator
attached to these two contacts makes that task easy.

Hardware Overview

Just to get familiar with this circuitry, here's an overview of the
components and how they work together. Fig. 6-2 (next page)

shows the entire circuit, which provides all the input necessary for

the software to make its decisions. Notice that this is the first time

Green Red

OB
SDial F -

o [\
\ RR

\o O B R

©
(Normally Closed) ® @@ g

Speaker
\

Oatmeal

Microphone

Figure 6-1
Telephone
Hybrid
Transformer

121

122

+
5
v

20
H
1
1
-
B
1

D
B
S

pB
s

74
03
73

J1
5

L
A
T
C
H

Op
to

-I
so

la
to

rs

1
0
0
Q

1

D
B
3

D
B
2

D
B
1

D
B
O

+
5
v

¥
s e

(T
o

+
Ba
tt
er
y

te
rm

in
al

of

M
M
5
3
9
5

A
m
p

On
/O

ff

o[-

1

o
o

TO
UC

H
T
o
N
E
®

GE
NE

RA
TO

R

R
D
Y
!

2
4

DA
CI

.,
_|
.D
.~
.<
,3
.5
79

MH
z

G
\
D

+
5
v

Co
lo

rb
ur

st
Cr
ys
ta
l

D
A
7

D
A
6

6
8
0
0

2

I
—

P
i
c
k
u
p
/
H
a
n
g
u
p

3|
1

2
w5
Q

D
A
S

=
+5

v
DA

4
M-

98
0

.

V
e
e

>
e
s

Ve
l

21
30

8]
4o

CA
LL

>
Am

pl
it

ie
r

;
—

PR
OG
RE
SS

DA
o

12
5|

DE
TE
CT
OR

|4
_
—
—

22
v

N
C
.

D
A
t

Te
lt
on
e

G
N
r
=
=
5
"
=
=
n
"
¢

\ V
—

\

Ti
p

(R
ed

)
21

.
>

D
A
2

;
E

1

2
0

6
\

DA
3

m9
s7

|2
R

\

8
°

18
2

=
\

Ri
ng

(G
re
en

DA
VI

C
’
Q

P
=

|
.

9
&

)

\
|
R

1
5

1
=

P
h
o
n
e

10
p
F

_
/

T
r
a
n
s
f
o
r
m
e
r

35
79

MH
z

1
Me
gO
hm

X
T
A
L

Control The World with HP-IL

6
1
5

.
MS

RQ
K
}

Fi
gu
re

6-
2

In
te

ll
ig

en
t
A
u
t
o
d
i
a
l
e
r

—
_
—

S
c
h
e
m
a
t
i
c

Intelligent Autodialer

we take advantage of the GPIO's 8-bit uni-directional mode: output
goes to Data Bus B, and input comes from Data Bus A.

The Touch Tone dialer portion should look familiar; it's the
same circuit used in Chapter 2, but without the elaborate

handshaking hardware. (More on that later.) Below the Touch

Tone generator we add another chip which performs the inverse

function;it takes the sounds, decodes them, and delivers a binary

code representing the digit pressed. This chip is needed for the

LND (Last Number Dialed) feature, so the computer can mimic

the last number manually dialed on a normal phone.

A chip that detects sound on the phone line is also needed so the
host computer can time the duration of the noise and tell whether

its ringing, busy, or dead. This gets its input from the same place
as the Touch Tone decoder chip above it, but delivers its output not
to the data bus, but to the MSRQ (Manual Service Request) line of

the GPIO.
Finally, the two Darlington-pair opto-isolators answer and

hang up the phone, and turn on an optional audio amplifier so the

13®mm,..

4
[R W\ I)CALLE 10N DOLLARS - il

]

A BiLL 4“—'&-@;‘%“

T By » % u'll
™M TELLUNG Youl

GILLIGAN, THERE’S
\[NO WAY OFF /

THE ISLAND

Control The World with HP-IL

user can monitor the progress of the call along with the HPT71.
(This is more of an anti-paranoia device to help the user learn to
trust in the 71's decision-making process. After all, an expert
system's advice is oflittle value if the user doesn't trust it!)

Touch Tone Decoding

Recall that in Chapter 2 we discussed how to hook up the
MM5395 Touch Tone chip to generate the frequencies needed for
automatic telephone dialing. Here we use the chip again, except
the special timer circuitry to control the handshake lines isn't
needed. Instead, we take advantage of the finer control offered by
the 71, and regulate the Touch Tone output rate via software rather
than hardware.

Back in the olden days, decoding these Touch Tone signals
required seven or eight temperature-sensitive phase-locked loop
passband filters all critically adjusted via RC constants. Now,
there's a single IC, the M-957 by Teltone, which only requires a
standard 3.579 MHz crystal and a resistor to do the identical job,
making Touch Tone decoding even easier than learning RPN.

Figure 6-3 shows how this neat little component is attached to
the hybrid transformer. Normally, this chip will be monitoring all

DA4 Figure 6-3
DAS How the Touch
DA6 Tone Decoder
DA7:1 M9 Is Hooked Up

1 -957

a* pp——oe o 22 DA1

2] Hox D2 A—— DA2
,—_CE =— DA3

o D3 gow_ anpi— 1.,
12/16 st8 J—————>—— pavi

———

A

w Auxclk :l16 ?Sv ~— 1Megohm

] 80 Oscicik I_‘.__]
15 28] XN [F— EE =,3.?('{]3\|{\11Hz

9 XouT —3

g sig. In [F-2———— Signal In——— "B" From
| Transformer

L

124

Intelligent Autodialer

audio activity on the phone line. If it hears any one of the 16 valid

Touch Tone codes, it produces a 4-bit output on its data pins and

pulses its strobe output high to tell anything that's listening that its
data pins have a valid output.

Notice the remaining four data lines: half are tied to positive,

and half are grounded. This is due to a discrepancy between data
representations: the M-957 chip gives its output in binary form,

while the 41 and 71 computers prefer to get their information in

ASCII coded format. (See below for table of discrepancies.) Notice
that for the digits 1 through 9, the only difference between the
binary and ASCII representations is that bits 4 and 5 in the ASCII
words are set to "1". Zero through D aren't as convenient; the
ASCII characters don't correspond to the digit entered. This is
especially troubling with the zero, which MUST be available as a
number. The simplest solution to this problem is to simply tie bits 4

and 5 of the data bus high, allowing digits 1-9 to appear to the

computer as their corresponding ASCII codes, and instruct the

computer to replace any colons (:) in the incoming numeric string

with a zero. Similar correction for *, #, A, B, C, and D are also

necessary.

LOW HIGH ASCII

INPUT FREQ FREQ HEX FORMAT ASCII FORMAT CHAR.

1 697 1209 0000 0001 0011 0001 1

2 697 1336 0000 0010 0011 0010 2

3 697 1477 0000 0011 0011 0011 3

4 770 1209 0000 0100 0011 0100 4

5 770 1336 0000 0101 0011 0101 5

6 770 1477 0000 0110 0011 0110 6

7 852 1209 0000 0111 0011 0111 7

8 852 1336 0000 1000 0011 1000 8

9 852 1477 0000 1001 0011 1001 9

0 941 1336 0000 1010 0011 1010 :

* 941 1209 0000 1011 0011 1011)

941 1477 0000 1100 0011 1100 <

A 697 1633 0000 1101 0011 1101 =

B 770 1633 0000 1110 0011 1110 >

C 852 1633 0000 1111 0011 1111 ?

D 852 1633 0000 0000 0011 0000 0

125

Control The World with HP-IL

Embedded Control Bits

One aspect of the generator chip should be mentioned at this
time. In order to achieve the features described in the first
paragraph, the circuitry must somehow determine whether the
outgoing data is meant for the touch-tone generator or the

opto-isolators, which control the hookswitch status and the
monitor amplifier. We solve this problem by noting once again the
Touch Tone discrepancy table. This table also represents the way

the 71 sends out ASCII digits; the lower four bits represent the

binary digit transmitted, and bits 4 and 5 are always set to "1", and
never get routed to the dialing chip. These bits do not go to waste;
they are used to control two functions.

Bit 4 is used as a "chip enable" input, hooked up so the chip will

only generate Touch Tones when this line is set to "1". This is

needed so we can tell it to stop transmitting; just output a word

with this bit set to "0" and it shuts up. (Normally, sending it a "0"

sends an ASCII 0 which has bits 4 and 5 set, and therefore dials a

"D", the 16th button.) Bit 5 is tied to two opto-isolators. When this
bit is set it picks up the phone (opto-isolator #1, which is connected

to the hybrid transformer), and turns on an optional audio

amplifier so the user can hear what's going on. (Opto-Isolator #2.)

The sample program below shows how this technique is

implemented.

10 ! This program picks up the phone, dials the

20 ! telephone number appearing in T$, and hangs up.

25 ! Really rude, huh?

30 ENDLINE"" ! Eliminates automatic

! carriage return/line feed

! normally appended to

! output.

40 A=DEVADDR("GPIO") ! Find the GPIO's address

! on the loop.

! Makes the GPIO a

! listener; the 71 a talker.

! Sets bit 5 high, picking

! up the phone.

50 SEND MTA LISTEN A

60 OUTPUT :LOOP; CHRS (32)

126

Intelligent Autodialer

70 FOR X=1 TO LEN(TS) Loop as many times as we

have digits to dial.

80 OUTPUT :LOOP; TS [X,X] Send only 1 ASCII

character.

90 WAIT .02 Let the signal stay for

(at least) .02 seconds.

!

!

1

!

1

!

100 SEND DATA 32 ! Turns only bit 5 on.

! Keeps phone off-hook;

! tells Touch Tone chip to

! shut up.

! Keep silent for at least

! .02 seconds.

! Dial next digit.

! Shuts everything off.

! (SEND DATA 0 would have

! worked, too.)

| Cancels current talker and

! listener status.

! Gratuitous exit.

110 WAIT .02

120 NEXT X

130 OUTPUT :LOOP; CHRS(0)

140 SEND UNT UNL

150 END

Notice that throughout the above program, bit 5 was always set

during the dialing process, but bit 4 (acting as "chip enable" for the

dialing chip) was set only when we were dialing a digit. We use

this property to solve a small but potentially disastrous situation:

having the Touch Tone decoder do its thing at the same instant

we're dialing numbers. If this were allowed to happen, the sound

generated by the dialer chip would instantly be decoded and fed

back to the GPIO a few milliseconds later. Because of a design

limitation of all three 8-bit ports, data coming and going at the

same time will "lock up" the port, effectively disabling it.

This problem is easily solved by routing bit 4, normally used for

the generator's Chip Enable input, to the CLEAR input of the

M-957 decoder chip as well, setting it to its DISABLE state

whenever we're dialing digits. This connection appears in the full

circuit schematic shown earlier.

127

Control The World with HP-IL

Call Progress Detector

Having a machine detect whether a line is busy or not is much

more difficult than one might initially think. Frequencies used to
signal ringing and/or busy are non-standard; and their volume is
certainly nothing to count on. Only one property remains

consistent throughout all American switching systems: the

rhythm.

Figure 6-4 shows the possible signals that we must recognize.

Click

I Anything < 0.2 s
(lgnore)

Several Clicks

| I | H | I (Reorder)

0.25s On/0.25s Off
Busy

0.5s On/0.5s Off

Ring

2.0s On/4.0s Off
(or) l

Figure 6-4
Possible Sounds

128

Intelligent Autodialer

+5V

U

4

3s7o MHz _[— [xn Vdd
XTAL =_L 2

XOUT Vref
6

CE Vss]—|

OUT—<|——|4 Detect Sigin |_5 In ("B"
] From Transformer)

M-980
Call Progress Tone Detector

The dotted lines show the minimum signal characteristic needed

to determine what it is. For example, it is not necessary to listen to
the entire ring to determine that it is a ring; if we first hear silence
and then a sound for more than a certain amount of time, then we

conclude that it must be a ring.

Given this binary time-domain input, it is up to the controlling

computer to time the duration of the silence/no silence periods and

draw a conclusion as to the status of the connection.

To detect whether the line is busy or not, we therefore need an

additional component that will tell a controlling computer what's

happening on the line. Teltone, the same company that makes the

M-957 DTMF (Dual Tone Multi-Frequency) decoder chip described

above, also makes the M-980 Call Progress Tone Decoder chip, as

shown above. Don't be fooled by its glamorous name; this chip is

little more than a bandpass filter, and will output a "1" if it hears a

sound and a "0" if it doesn't. This output is attached to the GPIO's

MSRQ (Manual Service Request) line, and it is up to the controlling

computer to retrieve this line's status by asking the GPIO for a

STATUS byte. The computer must be very fast (the 71 barely

makes it using BASIC, and FORTH is slower for any IL activity) in

order to have a high enough sampling rate to separate rings,

busies, and random noise. Here's where careful programming

saves the day.

The diagram in Fig. 6-5 (next page) resembles a state table, and

it represents an algorithm which allows you to recognize incoming

patterns in a stream of incoming data. All of the algorithms for

HP-IL are specified using a more complex version of state tables

129

Control The World with HP-IL

Silence

 Noise Noise too
Increment long

Increment >=13)

Silence too

long
 Silence

Increment
(Increment >20)

Previous noise

too short (click) Noise
Increment

(Increment

>9)

Someone's
picked up

the phone--
Ring

Figure 6-5
Algorithm for
Determining a
Busy Signalin the
Shortest Possible
Time

because they describe the process much more simply than an
equivalent flowchart would. In this application it will, in the
shortest time possible, measure the duration of the sounds and
silences and determine which of the six possible patterns it is
hearing.

The subroutine works like this: as soon as the number is dialed,

the program sits and waits for a sound to occur. When that

happens, we branch to the circle labeled "noise" and we take note

of the noise's duration. If it exceeds a certain threshold, then it

must be a ring so we exit. If not, then it could be either the tail end

of a ring or a busy pulse, and we branch down to the next circle,

where the duration of the silence is measured. At this point, a

long period of silence indicates a ring; a short period must be a

busy. Using this algorithm, the 71 can determine the status of a

connection in as little as half a cycle!

130

Intelligent Autodialer

Anyone with any experience with HP-IL is probably wondering
whether the 71 can take sound samples fast enough to do this job
adequately. Well, the answer is "yes" if you know how to utilize

HP-IL's low-level features.
The only way to determine the status of the MSRQ line is to

request a status word from the GPIO, and then check to see if bit

#5 is set. (The GPIO's owner's manual has more details about

interpreting the STATUS word.) But the 71's SPOLL("GPIO")

(Status POLL) function, the only means of requesting this

information, insists on sending out this lengthy HP-IL message

sequence every time the function is called:

UNL Unlisten. Disable all listeners.

TAD 01 Find out what's on the loop: Make the

SAT first device a Talker and Send Accessory

ID.

DAB 35 1st device responds with Data Byte 35;

it's a printer.

TAD 02 Make 2nd device a Talker and Send its

SAT Accessory ID.

DAB 16 2nd device responds with 16 (Mass

Memory)

TAD 03 Same thing with the 3rd device.

SAT

DAB 64 64 means it's interface class; we found

it.

UNL That's all on the loop. Stop listening.

TAD 03 Make device #3 a Talker.

SST Send Status.

DAB 1 GPIO responds with a Data Byte 1.

(Nothing's happening.)

UNT Untalk. Disable all talkers.

UNL Unlisten. Disable all listeners.

We can improve the situation substantially by telling the 71

where the device is:

131

Control The World with HP-IL

A=DEVADDR ("GPIO") ! This only has to be done once.

SPOLL (A)

and the sequence gets shortened to:

UNL

TAD 03

SST

DAB 01

UNT

UNL

An improvement, but still too much overhead. Clearly, in our

controlled situation where a number's just been dialed and the

loop configuration hasn't changed and no other device is going to

be utilized, this is a big waste. Our aim is to take as many samples

per second of the MSRQ line as we can. Fortunately, we can

increase our sampling rate by making use of HP-IL Service

Requests.

Service requests work sort of like bums on trains: they just hitch

a ride on a vehicle that's making its rounds anyway. As any data

frame is being passed around the loop, any device who needs

service ("Yoo Hoo, Mr. Loop Controller! I have some data for

you!") can simply affix this message to the data frame as it passes

by. When this frame makes it back to the loop controller (as all

frames must), the controller notices it and says "Hmmm...

someone out there is trying to get my attention, but I don't know
which device it is.", and immediately starts polling each device to

find out which one sent the message.

In our tightly controlled environment we don't need to know

who sent the message; we know to be expecting one from the GPIO

as soon as a number is dialed. And since during this period of

anticipation there is no data being sent, we will instead use a

dummy data byte: the IDY (Identify) frame.
The IDY frame is (in this usage) analogous to empty railroad

cars being sent out for the sole purpose of collecting bums, hobos,

132

Intelligent Autodialer

IT'S A BEAUTIFUL SPRING DAY

IN LoopviLLE. THE IL

| RAILROAD MAKES ITS USUAL
ROUNDS CARRYING DATA
FROM ONE PLACE TO THE OTHER.
‘“E’W’-

/)) THIS IS THE

THIRD TIME
THIS WEEK

133

Control The World with HP-IL

vagabonds, and service requests. In the sample program below,
we first warn the computer that any minute now we'll be expecting

an interrupt frame to come in, and when it does we should branch
to a certain line number. (Refer to lines 1100-1120.) Then, with the

ENABLE INTR 8 command, we tell the 71 what kind of interrupts

to respond to. (8 means to pay attention only to service requests,

and ignore all other frames such as those that might be sent by
other controllers.) Finally, we loop and send IDYs forever until a

device requests service, in which case program control will

automatically branch elsewhere and do something interesting.

The advantage of this method is that we can instantly tell if

another device needs service without the usual large overhead. All

that is needed is a single frame - IDY - to assess whether there's

sound on the line or not.

For this application, the GPIO has been configured by the DDL 0

command to send service requests whenever its MSRQ line goes

low, corresponding to a noise on the telephone line. Because we

also need to know how long there's been noise, we keep track of

every time we loop while waiting for an IDY to come back positive.

1060 SUB BUSY(Y,A) ! Y returns yes/no, A=GPIO address

from calling program.

1070 ! Ring: Y=0; Busy: Y=1.

1080 Y=0

1090 IF Y>=6 THEN Y=1 Q@ END ! If we have too many

clicks, assume it's a reorder and exit.

1100 ON INTR GOTO 1130

1110 X=0 @ ENABLE INTR 8

1120 SEND IDY @ X=X+1 @ IF X>300 THEN Y=1 @ END ELSE

GOTO 1120 ! Wait for noise.

1130 ON INTR GOTO 1140 @ X=0

1140 X=X+1 @ ENABLE INTR 8

1150 IF X>=13 THEN Y=0 @ END ! If we hear a long

noise, we have a ring.

1160 ! A noise will loop back to 1140; silence will

drop to 1180.

1170 SEND IDY

1180 IF X<3 THEN Y=Y+1 @ GOTO 1090 ! Ignore short

bursts but recognize reorders.

134

Intelligent Autodialer

DOING HER IMPERSONATION
/X~{ oF AN IL SERVICE REQUEST,

~

LASSIE QUICKLY HITCHES
A RIDE ON A VEHICLE

~~—| TuAT'S MAKING ITS
ROUNDS ANYWAY...

- Q 5 !‘n

k1 JH

b ;m Ml‘l ‘
= 3

T| TRAIN PULLS INTO

v/ CONTROLLER STATION...

135

Control The World with HP-IL

1190 X=0 @ ON INTR GOTO 1220

1200 ENABLE INTR 8

1210 SEND IDY @ X=X+1 @ IF X>20 THEN Y=0 @ END ELSE

1210 ! exit on a long pause.

1220 IF X<9 THEN Y=0 @ END ELSE Y=1 @ END

1230 ! If X<9 then other party must have picked it up

after 1st ring.

Refinements were made that allow detection of a "re-order"”

(which is telephoneese for that fast busy signal you hear when all
circuits are busy), and for the common case when the phone rings

less than one time and someone answers immediately. This

subroutine will detect that correctly, too!

Rolodex Function

Since I've always been a fan of point-and-dial type features, I

decided to implement one in this system. While the application is

running (which ideally should be all the time), the cursor keys are
used to scroll through a data file of your most frequently called

numbers. When the desired name is displayed on the screen,

hitting the "D" key automatically fetches the number associated

with the name, and dials it.

Ifflag 1 is set, the subroutine "PREPROC"essor is called before

the number is dialed. This flag indicates that I'm at my office, and
will automatically dial the correct prefixes to access the

appropriate outside line. Your office environment may vary, but

mine requires the following rules:

--Ifit's within the area code, dial "9" first.

--If the area code is 213 or 714, dial "91" first.

--If the area code is not 213, 714 or 818, dial "8" first.

The advantage of doing this with a subroutine is that I can run

this at home with flag 1 clear, and it will dial "1" before any

10-digit string, just like normal people do.

The external file containing the names and numbers of your

136

Intelligent Autodialer

 LOOK. EVERYONE
’ \IS LASSIE ! SOMEONE MUST™

NEED HELP/

HMMM... MIGHT BE

IMPORTANT. BETTER
GRAB IT/

AND SO THEY DISPATCH THE

SST TRAIN WHOSE ONLY 7

PURPOSE 13 TO SEEK
OUT THE SOURCE
OF THE DIS-

 137

Control The World with HP-IL

friends is a simple text file named PHBOOK, and can be created
using the EDTEXT function found in the FORTH/Assembler ROM.
Itis laid outlike this, where the names alternate with the
numbers:

Issac Asimov

2135552310

Carl Sagan

8051357911
Billy Hewlett
1248163

(Notice that "1" does not preced the area code. The "1" is
automatically appended by the "PREPROC"essor routine. That
way, whether this device is used in the home or office
environment, PREPROC can dial the appropriate prefixes.)

Outgoing Call Monitor

With this fringe benefit, we harness something the system does

anyway--constantly monitors the phone line for manually made

outgoing calls so it can mimic them in the "Last Number Dialed"

function. Since we know what numbers are being dialed and what

time and date they were made, why not keep track of them
automatically?

Glad you asked. The difficult part of it, though, is determining

which calls went through and were answered after several rings.

(All the necessary hooks were in the existing algorithms, so the

subroutine "log" was added at the end.) This feature creates and

then appends a data file called PHLOG (Phone Log), which can be

printed out once a month with this simple program:

10 ENDLINE

20 ASSIGN #2 TO * @ ASSIGN #2 TO PHLOG

30 READ #2;N$,T$,D$ @ PRINT N$;" ";T$;" ";D$ @ GOTO 30

138

Intelligent Autodialer

AND UPON ITS RETURN...

OH,NO/ HE’S CAUGHT

IN QUICKSAND- Now

THAT WE KNOW

WHAT THE MESSAGE.

IS AND WHERE
)T CAME FROM

| CAN Now ACT‘

ACCORDINGLY.

'STATION #5
SENT THIS

|E THESE 10015

CouLD'VE READ

MY THCUGHT BALIS
THAT GUY WOULD
STILL BE Aqu/

N

L71777 Y1 \ [

ND S0, oMEE |||
HGA/N THE |

*Ea fiILROflD
/WUES 70

CHREY \DATA TO
THOSE 'WHO NEED
IT; YET K NoT
TOoO BUSY TO

\RESPOND TO IN-
o/woum_ DEVICES
PLERS, FOR ASSISTAME|
(LAs;ys'sOWNER BY Tlte by

SAVED.)

 N

—F£ Jhyb)

139

Control The World with HP-IL

57182}

TELEPHONEBILL

55510
RERQIOL...

B!

= \
5551010 [/

N
870654

S
N

S5

,'.’:.‘%‘f y 9991810
KA 740 PM
A5 .LSS 1184 . — ;
SIS 3 R g
ISR RSR DR

%

Some Americans might prefer to rearrange the PRINT statement

so as to display the date in the backward way to which they are

accustomed.

Complete Instructions

0) (Where else but in computer literature do you see anything
numbered "zero"?) Make sure the program (listed below) is in

memory, along with the phone book file PHBOOK and optionally

the program that prints PHLOG out once a month, which I

confusingly call PRLOG (Print Log). Check the status of Flag 1,
which tells the PREPROC subroutine whether you're calling from

your home or office. (Refer to PREPROC subroutine for details.)

1) This system is invisible until you need its special functions.

While your phone isn't being used, the 71 displays a running clock

and checks for keyboard input and touch tone activity on the phone

line.

2) Make an outgoing call on your phone in the usual manner.

The number you dialed is now available as the LAST NUMBER

DIALED (LND).

140

Intelligent Autodialer

3) If the LND was busy, and you want the 71 to keep trying until it

gets through, press "R". The 71 will then keep trying (you can

monitor the call progress yourself using the optional amplifier,

which is only on when the 71 has picked up the phone) until it

determines that the other end is ringing, at which time it tells you

by playing 5 long BEEPs. Pick up the phone, and then press any

key on the 71 so it will "hang up".

4) To blindly redial the LND without the automatic redial-if-busy

feature, press "L". When your call is completed (you'l know when

that occurs if the amplifier's attached), pick up the phone and

press any key on the 71 to have it hang up.

5) To use the Rolodex function, use the up-arrow and down-arrow

keys to scroll through the names in your PHBOOK file. When the

desired name is visible, press "D" to determine the number and

dial it. If flag 1 is set, the proper office prefix will be dialed

according to the instructions in PREPROC. When the call has

gone through, pick up the phone and hit any key. This number is

now the new LAST NUMBER DIALED.

6) Once a month (or sooner!) print out and/or delete the PHLOG

file that the PHONE program appends phone usage data to

whenever an outgoing call is made.

Here's the program:

10 ! Program PHONE controls just about everything.

20 ! Two data files are used: PHBOOK, a name /phone #

text file, and PHLOG, which logs all calls.

30 ! Keys used while active: L redials last number

dialed.

40 ! R means take the LND and redial until not busy.

50 ! Up and down arrows access names in your phone

book.

60 ! D dials the name called up by up- and

down—-arrows.

70 ! Variables used: T$ is the last Touch Toned (r)

number.

80 ! Z is the size of the Phonebook file.

141

90

100

110

120

130

140

145

150

155

160

165

170

180

190

200

210

215

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

142

!

Control The World with HP-IL

N is the Phonebook file pointer; N$ is the last
name retreived.

! Flag 6 means hold display till x>30.
! Kk ok ok ko ok ok ok ok ok ok ok k ok ok ok ks ok ok ok ok Kk k kK K ok ok k ok ok Kk k ok ok ok ok K ok ok ok kK Kk Kk

GOSUB 'INIT'

'BEGIN': K$=KEYS$

IF K$="L" THEN BEEP 2000, .07 @ CALL LND(TS,A)

! Last # dialed; bypass preprocessing.

IF K$="R" THEN BEEP 2000, .07 @ CALL REDIAL(TS,RA)

! Redial till not busy.

IF MOD(SPOLL(A),64)>1 THEN CALL WHATISIT(TS,A)

! Investigate cause if service request.

IF K$="#50" THEN 'UPAR' ! Uparrow's been hit.

IF K$="#51" THEN 'DNAR' ! Down arrow has been

pressed.

IF K$="#162" THEN 'MAXUP' ! g-uparrow's been hit.

IF KS$="#163" THEN 'MAXDN' ! g-downarrow's been

hit.

IF K$="D" THEN BEEP 2000,.07 @ GOTO 'THIS' !

! 'D' means "Dial this name!".

IF FLAG(6)=0 THEN DISP FNTS$ (TIMES)&FNDS$ (DATES)

GOTO 'BEGIN'

X=X+1 @ IF X>30 THEN X=0 Q@ CALL LOG (#2,T$)

GOTO 'BEGIN'
Iokk ok ok ok k& & &k okok ok ok ok ok kK & K ok ok ok ok ok ok ok kK K ok kK ok ok ok ok ok k kKKK K KK

'UPAR"': N=MAX (N-2,0) @ GOTO 'READ'

'DNAR': N=MIN(N+2,Z) @ GOTO 'READ'

'MAXUP': N=0 @ GOTO 'READ'

'MAXDN': N=Z @ GOTO 'READ'

'"THIS': READ #1,N+1;T$ @ DISP "

DIAL(TS$,A) @ GOTO 'READ'

'READ': READ #1,N;N$! Read a name from the phone

book file.

"&TS @ CALL

DISP N$ @ SFLAG 6 @ X=0 @ GOTO 'BEGIN'
Iokkk Ak ok ki ok ok k ok ko kk kk ko k ok ok ok k ko k ko kk ok k ko kk ko ok ok ok ok ok ok ok ok

'iNIT':

RESTORE IO @ RESET HPIL

A=DEVADDR ("GPIO")

SEND UNT UNL LISTEN A MTA DDL O DATA

194,16,218,0,0 UNL UNT
SEND MTA LISTEN A DATA 0 UNT UNL Shuts touch

@

390

400

410

430

440

450

460

470

480

485

490

500

510

520

525

530

540

545

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

Intelligent Autodialer

tone chip up.

DIM T$[20] @ DIM Q$[12]

ASSIGN #1 TO * @ ASSIGN #1 TO PHBOOK ! Opens the

PHone BOOK file.

Z=FILESZR("PHBOOK")—2 420 ASSIGN #2 TO * @ ASSIGN

#2 TO PHLOG

ON ERROR GOTO 440 @ FOR X=1 TO 9999 @ READ #2,;NS$ @

NEXT X

OFF ERROR ! Ha! Fooled you!

DEF FNTS (T$) ! Displays the current time in a

user-friendly format.

C=VAL (T$[1,2])

IF C=0 THEN 'MID' ! Branch here to handle 12 AM.

IF C>12 THEN 'PM' ! Displays PM format.

IF C=12 THEN FNTS$=" "&T$[1,5]&" PM " @ END

FNTS=" "&TS$[1,5]&" AM " @ END

'pM': FNTS$=" “"&STR$(C-12)&T$[3,5]&" PM " @ END

'*MID': ENTS$=" 12"&TS$[3,5]1&" AM " @ END

END DEF

| FNDS$ converts a DATE$ into a more familiar

format.

DEF FNDS (D$)=DS$[4,81&"/"&D$[1,2]

ENDLINE "" @ DELAY 0,0 @ CFLAG 0 @ SFLAG -23 !

! Needed to have ENTER terminate with an EOT.

RETURN

1 **********************************k*‘k**********‘k*

SUB DIAL(TS,R)

CALL PICKUP (A) ! Pick up the phone.

CALL PREPROC (T$,N$,A) ! Dial any needed prefixes.

CALL DIALIT(TS,A) ! Dial the number.

x=0 @ T$=N$&T$! The number + any prefixes 1is

saved for LND.

IF KEYS#"" OR X>5000 THEN BEEP 2000, .07 @ CALL

HANGUP (A) @ END ! Any key exits

X=X+1 @ GOTO 620

! **********~k***k**************************k********

SUB DIALIT(TS,A) ! Dials # without preprocessing.

SEND MTA LISTEN A

FOR X=1 TO LEN(TS$)

OUTPUT :LOOP ;TS [X,X]

WAIT .02

143

700

710

720

730

740

750

760

770

780

790

800

Phone Transformer

144

Control The World with HP-IL

SEND DATA 32 ! Keeps the phone off hook between
digits.

! WAIT .005

NEXT X

SEND UNT UNL

SFLAG 6 @ END SUB ! Tell main routine that a #'s
just been dialed.
! **

SUB PICKUP(A) ! Picks up the phone.
OUTPUT :A ;CHRS$(32) @ WAIT .75 @ END

SUB HANGUP (A)

OUTPUT :A ;CHRS(0) @ END
! ****:k***

ou

decoder

one

Call Progress

Monitor

Dialer

T
O
d
>
r

t

Answer/Hangup

~~—~ 'I Monitor Amp
f_— On/Off

Intelligent Autodialer
Block Diagram

810

820

825

830

840

850

860

870

880

890

895

900

910

920

930

940

950

960

970

980

990

1000

1010

1020

1030

1040

1050

1060

1080

Intelligent Autodialer

SUB PREPROC (TS$,NS$,A) ! Preprocessor adds the

proper digits to get outside lines, FTS, etc.

! If flag 1 set, then office prefixes are used.

! If flag 1 = clear, then it dials "1" before any

! string > 7 digits.

! NS returns the preprocessor's additions.

IF FLAG(1l)=0 THEN 'HOME'

IF LEN(TS$)<=7 THEN N$="9" @ CALL DIALIT(NS,A) Q@

END

IF T$[1,3]="213" OR T$[1,3]="714" THEN 'NOTLOCAL'

N$="8" @ CALL DIALIT(NS,A) @ WAIT .5 @ END

'"HOME': IF LEN(TS$)<=7 THEN END ELSE N$="1" @ CALL

DIALIT(NS,A) @ END

'NOTLOCAL': N$="9" @ CALL DIALIT("9",A) @ WAIT .5

@ TS="1"&T$ @ END
! kkkkkhkkkhk kAR kAR AR kAR A Ak hkhkkhkkhhkkhkhkhkhkkhkkkhkkkhkkkkkx

SUB WHATISIT(TS,A) ! Determins if noise is TT

activity or a dial tone.

S=MOD (SPOLL (A) , 64)

IF S=2 THEN ENTER :A ;QS$

IF S=2 AND FLAG(0)=0 THEN T$=Q$ @ SFLAG 0 ELSE

T$S=TS$&Q$
IF S=2 THEN DISP T$ @ GOTO 'CHECK'

IF S=32 THEN S=MOD (SPOLL (A), 64)

IF S=2 THEN 930

IF S=1 AND FLAG(0) THEN DISP T$ @ CFLAG 0O @ END

ELSE END

! If flag 0 set, this indicates that T$ is still

under construction.

"CHECK': X=POS(T$,":") ! Correct for any incoming

zZeros.

IF X=0 THEN SFLAG 6 @ END ELSE TS$[X,X]="0" @ GOTO

'CHECK'

! % K Kk Kk Kk Kk ok K kK K K Kk ok k ok ok Kk ok kK kK ok ok ok ok ok k k k ok ok ok ok ok ok ok ok ok ke ke k ok ok ok ok

SUB REDIAL(TS,A) ! Redials last T$ until ring or

any key hit.

DISp " "&TS

"START': CALL PICKUP (A)

IF LEN(TS$)>7 THEN CALL DIALIT(TS[1,1],A) @ WAIT

.5 @ CALL DIALIT(T$([2],A) @ GOTO 1090

CALL DIALIT(TS,A)

145

1090

1100

1110

1120

1121

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1310

1320

1330

1340

1350

1355

146

Control The World with HP-IL

CALL BUSY(Y,A)
! DISp " "&§T$! Keep this commented line in.

IF KEYS$#""™ THEN BEEP 2000, .07 @ CALL HANGUP (A) @

END ! Any key exits.

! IF Y=1 THEN CALL HANGUP (A) @ WAIT 1 @ GOTO

'START'

IF Y=1 THEN CALL HANGUP(A) @ WAIT 1 Q@ GOTO

'START'

FOR X=1 TO 5 @ BEEP 880, .25 @ NEXT X

IF KEYS$#"" THEN BEEP 2000, .07 @ CALL HANGUP (A7) @

END ELSE GOTO 1140 ! Any key hangs up.
! Kk kK ok ok ok k ok ok ok ok ke ok ok ok ok ki ki ke k ki ok ki ki ki ki ki k ok ki ok ok ok ok ok ok ki ok ok ki ok ok ok ok ok ok ok

SUB BUSY(Y,A) ! Y returns yes/no, A=GPIO address

from calling proram.

! Ring: Y=0; Busy: Y=1.

Y=0

IF Y>=6 THEN Y=1 @ END ! If we have too many

clicks, assume it's a reorder and exit.

ON INTR GOTO 1230

X=0 @ ENABLE INTR 8

SEND IDY @ X=X+1 @ IF X>300 THEN Y=1 @ END ELSE

GOTO 1220 ! Wait for noise

ON INTR GOTO 1240 @ X=0

X=X+1 @ ENABLE INTR 8

IF X>=13 THEN Y=0 @ END ! If we hear a long

noise, we have a ring.

! A noise will loop back to 1110; silence will

drop to 1150.

SEND IDY

IF X<3 THEN Y=Y+1 @ GOTO 1190 ! Ignore short

bursts but recognize reorders.

X=0 @ ON INTR GOTO 1320

ENABLE INTR 8

SEND IDY @ X=X+1 @ IF X>20 THEN Y=0 @ END ELSE

! exit on a long pause.

IF X<9 THEN Y=0 @ END ELSE Y=1 @ END

! If X<9 then other party must have picked it up

after 1st ring.
! A A KA KA A Ak AAKRAA KR AkA R AkA Ak AAkAhkhkhkhkkhkhkkhkkhk Ak kkhkkkhkkkxx*k

SUB LND(T$,A) ! Performs Last Number Dialed.

DISP " ", TS @ X=0

1360

1370

1390

1400

1410

1420

1430

1440

1450

1460

1465

1470

1480

Intelligent Autodialer

CALL PICKUP (A)

IF LEN(TS$)>7 THEN CALL DIALIT(TS$[1,1],A) @ WAIT

.5 @ CALL DIALIT(TS$[2],A) @ GOTO 1400

CALL DIALIT(TS,A)

DISP " ", TS @ X=0

IF KEYS$#"" OR X>5000 THEN BEEP 2000, .07 @ CALL

HANGUP (A) @ END

X=X+1 @ GOTO 1410
! KAKRKAKKA A A A A AR AR A A A AR Ak hkhkkhkhkhkkhkkhkkhkkhkhk hkkhkkhkkhkkkkkhkkhkkkkkk

SUB LOG (#2,TS)

! Appends numbers to the PHLOG (Phone Log) file.

CFLAG 6

END

PRINT #2;T$,TIMES,DATES
END SUB

Well, that's all there is to it! Of course, this is just a

demonstration of all the things possible with this hardware. A few

more program refinements will allow the PHLOG file to record the

call's duration as well as time and date; and a fancier PRLOG

program could pull only the calls made between "this date" and

"that date". This is where your needs and your imagination take

over.

147

Control The World with HP-IL

148

Chapter Seven

HP-41 BASED TELEPHONE

ANSWERING MACHINE
Utilizing Speech Synthesis and Touch Tone Decoding

I use my Hewlett Packard for the answers found in Calculus

And problems most encountered in numerical analysis.
It calculates proportions used in heart and lung dialysis.
Eventually I'll work for them and move to where Corvallis is...

-- from I am the Very Model of an Engineering Graduate

by G. Friedman

This is the most outrageous 41 project I was able to dream up.

It incorporates the speech synthesis discussed in Chapter 5, and in

addition also encompasses Touch Tone recognition, telephone line

interface (see previous chapter regarding FCC rules), and an

Extended Memory database function. It allows you and your

friends to interact with the machine from a pushbutton phone, and

even lets you control things in your house from across the country!

This system performs the same functions as standard telephone

answering machines: detecting a ring, "picking up" the phone,

synthesizing a "Hello, I'm not home" type message, turning on a

tape recorder to record the caller's verbal message, and hanging

up. The fun starts when you start to add the following capabilities:

1) Automatic (verbal) Date and Time Stamping--At the end of

each caller's message, the machine announces the current time

and date, so you'll know upon playback when the calls came in.

(Nobody ever leaves the time they called when you ask them to.)

149

Control The World with HP-IL

2) Priority Message Taking--Priority callers can Touch Tone in
a preassigned 4-digit code in lieu of a verbal message; the caller

then gets a personalized "Thank you" (i.e. "Thank you, Nancy"),
and a phone message containing the first and last name, phone
number, time and date is instantly printed out, resulting in a
printed list of priority clients whose calls should be returned first.
(Non-priority callers will just have to wait until you get around to
listening to their taped messages before their calls are returned.)

3) Priority Message Transmission--The list generated in item #2
can be read back to you over the phone in case you can't get to your
equipment. After the user's 4-digit Touch Tone code is entered, the
system will announce the number of messages, first and last
names of each client, phone number, time and day they called.

4) Extremely Remote Control--This system also allows you to
turn up to five A.C. appliances on or off from anywhere in the
world just by entering the proper 4-digit Touch Tone code. Verbal
confirmation and the status of the device (i.e. "Device number 1 is

off.") is announced.
5) Outgoing Call Monitor--When the user is at home, the system

doubles as an outgoing call monitor, where the time, date, and

number dialed from any Touch Tone extension phone is
automatically logged, providing a hardcopy record of all outgoing
calls so they can be checked against the Phone Co.'s bills.

There is very little new information introduced in this chapter.
It exists because 1) it is the most versatile answering machine on
the planet, and 2) it gives yet another example of the diverse things
that can be done with just a few basic circuits. It also exists to

show that the 41 is no less a capable controller than the 71.

New HardwareAspects

The circuit needed to implement the above function doesn't

differ greatly from those described in previous chapters. (See

schematic of Fig. 7-1.) The speech synthesizer and accompanying
latch are the same as described in Chapter 5. The Touch Tone

decoder interfaces to the phone line in the same way as in the
previous chapter. So, to avoid repeating myself only the new
hardware aspects will be described.

150

151

=)

T
+5
v

To
Ta
pe

Re
co
rd
er

“R
EM
ot
e"

Ja
ck

Ba
rr
el

Ti
p

1
0
0

S1
1
\
_

J
1
0
0
Q
‘

2 5

74
37
3

f

 8-
Bi
t

La
tc
h

1

 7
4
C
3
7
3

8-
Bi

t

La
tc

h

1
1
0
V

A
C

"R
ec
or
d"

E
—
—
P

In
pu

t
-

Ti
p
(R
ed

]
Ri

ng
(G

re
en

)

1
10
uF

 Te
lt
on
e

M
-
9
5
7

 1

M
O

Fi
gu
re

7-
1

S
p
e
e
c
h

Sy
nt
he
si
s

a
n
d
T
o
u
c
h
T
o
n
e

R
e
c
o
g
n
i
t
i
o
n

Ci
rc
ui
t

Telephone Answering Machine

Control The World with HP-IL

The first things you'll recognize immediately in Fig. 7-1 are

located along the top: an 8-bit latch controlling three opto-isolators.
Sharing the same input lines, directly below the latch, is the
speech circuitry as described in Chapter 5. The opto-isolators are
used to control three things in exactly the same manner as was

demonstrated in the first two chapters: picking up/hanging up the
phone, turning a tape recorder on and off via its "Remote" input,

and switching an AC appliance on and off via a triac driver. This

leaves five outputs unused, which means there is still room to

expand on this system's already awesome capability.
The other part you'll recognize is the M-957 Touch Tone decoder

chip, wired slightly differently, in the lower left-hand corner. The

wiring differences put the chip into a more sensitive receiving

mode, to allow it to hear codes dialed from, say, France.

Outgoing Call Monitor

Just to whet your appetite, here's a program for the 41 which

keeps a record of all your outgoing calls, just like the 71 did in

Chapter 5. (Barcode for this program begins on page 285.) With

the Touch Tone decoder chip attached to the phone line as per the
schematic, this program '"listens in" on the line, displays all

Touch Tone activity in blocks, and makes the necessary character

corrections for *, 0, #, A, B, C, and D, as described in the previous

chapter. If a printer is attached, a record of all activity, including

the date and time, is automatically printed out! (To increase the

speed, A, B, C, and D will be decoded only if flag 1 is set.) Now,

next time you scream "I never made those calls!!" upon receipt of

your phone bill, you can prove it (at least to yourself).

01*LBL "INTT2" 10 .035 19 RCLPT

02 XEQ "GPIO" 11 STO 01 20 X>07?

03 "TTONE" 12 CF 21 21 DELREC

04 3 13*LBL 01 22 .035

05 SF 25 14 INSTAT 23 STO 01

06 CRFLAS 15 FS? 01 24 FC2C 08

07 RCLPT 16 GTO 02 25 GTO 11

08 X>07 17 ISG 01 26 32

09 DELREC 18 GTO 01 27 FINDAID

152

Telephone Answering Machine

28 X=07? 62 65 96 X<07?

29 GTO 11 63 X<>Y 97 GTO 08

30 SF 21 64 YTOAX 98 48

31 SF 12 65 GTO 03 99 X<>Y

32 ADV 66*LBL 04 100 YTOAX

33 PRA 67 62 101 GTO 07

34 CLA 68 POSA 102*LBL 08

35 CF 12 69 X<07? 103 59

36 TIME 70 GTO 05 104 POSA

37 FIX 2 71 66 105 X<0?

38 ATIME T2 X<>Y 106 GTO 09

39 PRA 73 YTOAX 107 42

40 CLA 74 GTO 04 108 X<>Y

41 DATE 75*LBL 05 109 YTOAX

42 FIX 4 76 63 110 GTO 08

43 ADATE 77 POSA 111*LBL 09

44 PRA 78 X<07? 112 60

45 CF 21 79 GTO 06 113 POSA

46*1LBL 11 80 67 114 X<07?

47 CLA 81 X<>Y 115 GTO 10

48 GTO 01 82 YTOAX 116 35

49*LBL 02 83 GTO 05 117 X<>Y

50 FC? 08 84*LBL 06 118 YTOAX

51 TONE 8 85 48 119 GTO 09

52 RCL 02 86 POSA 120*LBL 10

53 SELECT 87 X<07? 121 APPCHR

54 INA 88 GTO 07 122 0

55 FC? 04 89 68 123 SEEKPT

56 GTO 07 90 X<>Y 124 GETREC

57*LBL 03 91 YTOAX 125 SF 08

58 61 92 GTO 06 126 AVIEW

59 POSA 93*LBL 07 127 .035

60 X<07? 94 58 128 STO 01

61 GTO 04 95 POSA 129 GTO 01

130 END

(You can also find out the sequence required to play "Mary had a

Little Lamb" the next time you're on the phone with an 8-year-old.)

And now, on with the circuit explanations.

153

Control The World with HP-IL

Telephone Line Interface

Half of this critical function is identical to that of the intelligent
autodialer from the previous chapter. The other half, consisting of
a 10 microfarad capacitor, a bridge rectifier, and a relay (yes, a

relay) as shown in Figure 7-1 detects the characteristic AC signal

of a ringing telephone. When the relay is actuated it pulls the
MSRQ line to ground, and the controlling computer must check
the IL Converter's STATUS word periodically to detect the ring.

(This is the identical method used to the tell the 71 there was noise

on the line in the previous chapter.) Yes, there are more modern

ways to detect a ring, but there still is no better way to convert a
90V AC signal into a safe, pull-down ground.

The clump of components in the lower right-hand corner
comprise an amplifier module, which was added between the

speech chip's output and the "GN" input of the hybrid transformer

to insure high voice quality over the phone line. This can be

anything from a tape recorder set to "monitor" mode to a small
1-transistor type, available as an off-the-shelf item in most

electronics stores.

Chip Select

When you wish to communicate with only one of many chips

connected to a data bus, the common method to do so is by utilizing

the 'chip select' inputs which many ICs possess and controlling

them with a ninth address line, as shown in Fig. 7-2a.

Normally, adding a decimal 256 to outgoing words will route
those words to the lower chip, and words less than (or equal to) 255
automatically go to the top. However, this method cannot be

employed here because 1) the SC-01 has no chip select input, and 2)

in order to obtain a 9th data line, the IL Converter must be

configured to be 16 bidirectional lines. This results in nearly

doubling the time it takes to output an alpha string, as well as

doubling the number of characters in the string needed to say a

phrase. On the 41, these are quite significant!

The solution (shown in Fig. 7-2b) makes use of two NAND gates

configured as a homebrew R/S flip-flop, and two unused lines from

154

Telephone Answering Machine

Do

D1

D2
D3
D4

Ds

Dé
D7

Chip Select

Chip Select

Figure 7-2a
Normal Chip
Select Scheme

D8

DB0-DB7 \‘

8 6
(Trigger)

* SC-01

Speech

74C373

11 Latch

(PWRDN) Y

DAVO
2

1r

8 74C373

.\-. Latch

Figure 7-2b 11
Chip Select the
Way | Had to
Do It.

155

Control The World with HP-IL

the 82166A IL Converter: PWRDN (Power Down, used to command
a low-power sleep state) and GETO (Group Execute Trigger Out,
normally used to synchronize events around the loop). Both can be
pulsed under program control, making them ideal inputs to the
flip-flop which "memorizes" which line was pulsed last.

The flip-flop's output then enables one of two NOR gates which
route the DAVO (Data Valid Out) signal to the proper chip. This
way the data reaches both chips, but only one chip is being told that
the data is valid. (Clever, huh?) Using this method, a 41 would
route its output to the currently SELECTed device (assume it's the
GPIO)as follows. To send data to the speech chip:

TRIGGER (Pulses the GETO output high, and routes

all subsequent info to the speech chip)

SF 17 (Suppresses automatic CR/LF.)

MANIO (Routes information to selected device

instead of a printer.)

*1&~#Q@((It's actually a synthetic text line

containing a speech pattern.)

ouTA (Send it out to the SELECTed device.)

d |
CALIFORNIA

\’ i

CANADA P

{* 2

156

Telephone Answering Machine

and to send data to the control latch:

PWRDN (Pulses the PWRDN output high, and

routes all subsequent info to the

control latch.)

MANIO (Routes information to selected device

instead of a printer.)

2 ACCHR (Turns the tape recorder on.)

Because the PWRDN (Power Down) line plays such a crucial role
in this system, only the 82166 IL Converter can be used. The

82165A HP-IL/GPIO interface, as described in Chapter 1, lacks

this output and therefore cannot easily accommodate our needs.

Software Description

The software detailed below performs as follows: after detecting

a predetermined number of rings, the phone is answered and it

says "Hello. This is Gary's Hewlett Packard. At the tone please

leave your name, message, and telephone number. Beep!" (I'm too

lazy to build an oscillator, so I just programmed the synthesizer to

say "Beep!"). A tape recorder turns on, and the caller has 20

seconds to leave a verbal message. After the time is up, the

machine announces the current time and day, (so you'll know

upon playback when the message came in), says "Good-bye", turns

off the tape recorder and hangs up.

You also have the option of assigning priority client status to

any of your friends (or enemies) by giving them a personalized

4-digit code. If this client code is Touch Toned in during the time

normally allotted for a verbal message, the tape recorder shuts off,

and the machine says "Thank you, Isaac" (or whatever that

client's first name happens to be). The current time and day are

announced, and finally, a "Good-bye" and hang up occur. A

message on the IL printer is then generated containing the

caller's first name, last name, phone number, time and date of the

call.

By the way, all this personal information has been stored away

157

Control The World with HP-IL

in an ASCII file named "CLIENT", which has the data on all your
friends organized as follows:

4-digit Client Code
1020—
Michael First and last names for printer

~ eAng .
Coleg i— First and last names for synthesizer
9pus~0t»

555042994— Client's phone number (any number of digits)

7416

Seth
é;£zV'

Vallas
P~z e oY
2125557416

The ASCII file is searched until a match is found to the code

just entered. I usually assign the client's number to be the same

as the last four digits of their phone number, making it easy for
them to remember.

The system also features two user codes. One (which I assigned

as 4111) will tell me, over the phone, how many priority clients

have called, and then will read to me all the information contained

in the printed list so far. The number of messages the calculator
can remember is = (SIZE-12). The other user code, 4132, will

toggle an alternating currentdevice on or off, with verbal

confirmation, each time the code is entered. This gives you remote

control capability from anywhere in the world.

At all times, the display gives a running count of the number of

calls that have been received.

The Program

All the software needed for this system is provided in the
following pages. The program "TIMED" from Chapter 5 is also

called by many of these routines. (Barcode for these programs, by

the way, is provided beginning on page 287.)

158

Telephone Answering Machine

"GPIO"
This is an initializing program, designed to configure the IL

Converter as follows:

1) 8-bit unidirectional data transfer (8 lines going in, 8 lines

going out.

2) Positive data logic.
3) Full negative handshake logic.
4) No CR/LF on input.

5) Status word shows MSRQ and that there's data waiting.

6) End-Of-Transmission occurs when the buffer is empty.

The program is listed below:

01*LBL "GPIO"

02

03

04

05

06

07

08

"D+++++"

ADROFF

64

FINDAID

SELECT

STO 02

LAD

09

10

11

12

13

14

15

16

SYNTHETIC TEXT LINES:

02: 246,68,194,16,218,0,0

0

DDL

5

OUTAN

UNL

ADRON

SF 17

AUTOIO

"ANSWER" (Main driver routine)

01*LBL

02

03

04

05

06

07

08

09

10

11

XEQ "GPIO"

CF 29

0

STO 01

STO 04

.999

STO 05

11
+

STO 08

"ANSWER™" 12

13

"TIME "

RCLPTA

14*LBL 01

15

16

17

18

19

20

21

22

0

STO 01

FIX O

RCL 05

INT

ARCL X

"| CALL"

17

18

19

20

21

22

23

24

23

24

25

26

27

28

29

30

31

32

33

PWRDN

0
STO 06

XEQ "ACCHAR"

TRIGGER

3

XEQ "ACCHAR"

END

1

X/Y?
ngn

AVIEW

CLA

*LBL 30

FS? 49

OFF

INSTAT

Fs? 01

CLRDEV

159

34

35

Control The World with HP-IL

FC? 05

GTO 30

36*LBL 05

37

38

.999

STO 00

39*LBL 02

40

41

42

43

44

45

INSTAT

FC? 05

GTO 03

ISG 00

GTO 02

46*LBL 03

47

48

49

50

51

52

53

54

55

56

57

58

ISG 01

RCL 00

4

X>Y?

GTO 01

RCL 01

1

X=Y?

GTO 06

.03

STO 00

59*LBL 04

60

61

62

63

64

65

66

67

68

INSTAT

FS? 05

GTO 05

ISG 00

GTO 04

' ASSHOLE"

AVIEW

PSE

GTO 01

69*LBL 06

70

71

72

73

74

160

E~X

LN

0

XEQ "FLIP™

ISG 05

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

5

LN
E~X
LN
E~X
INSTAT
FC? 01

XEQ "MSG2"
1
XEQ "FLIP"
"t

OUTA
XEQ "INTT4"
FC? 09

GTO 12
ASTO 07
"CLIENT"
0

SEEKPTA
CLA
ARCL 07
POSFL
SF 25

X<07?

GTO IND 07
FC? 25

CF 09
FC2C 25
GTO 13
Tttt(4"

INT
1
+

SEEKPT
ARCLREC
SF 17
OUTA

*ILBL 12
XEQ "TIMED™
5

E~X

116

117*LBL

LN

"RETURN"

118*LBL 13

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

XEQ "BYE™"

RCL 06

X<>F

CF 01

X<>F

STO 06

PWRDN

XEQ "ACCHAR"

TRIGGER

0

XEQ "FLIP"

FC? 09

GTO 01

DATE

DOW

1 ES

/
TIME

FIX 2

RND

100

/
+

"CLIENT"

RCLPTA

INT
+

STO IND 08

ISG 08

32

FINDAID

X=07?

GTO 01

"CLIENT"

RCLPTA

1
+

INT

Telephone Answering Machine

157 SEEKPT 168 SF 17 179 TIME

158 GETREC 169 PRA 180 FIX 2

159 SF 12 170 CLA 181 ATIME

160 SF 21 171 CF 12 182 M| "

161 SF 17 172 1 183 DATE

162 ADV 173 + 184 FIX 4

163 PRA 174 SEEKPT 185 ADATE

164 2 175 GETREC 186 PRA

165 + 176 SF 17 187 CF 21

166 SEEKPT 177 PRA 188 GTO 01

167 GETREC 178 CLA 189 END

SYNTHETIC TEXT LINES

104: 250, 185, 174, 169, 141, 153, 131, 41, 40,

45, 3. "Thank You"

85: 246, 142, 172, 172, 172, 165, 131. "Beep!"

Yovu HAVE
THREE MESSAGES:

M.
0000007

TIFFANY CASE
8880250

ROGER

161

Control The World with HP-IL

LINES1-13
Generalinitialization. Configures IL Converter (via
"GPIO" subroutine below) and shuts off all devices and
stores constants in registers. (See also register usage table.)

LINES 14-27
ALSO CALLED LBL 01. Resets display with "(X) CALLS", X
being the integer portion of R05. If only one call occurred,
the "S" at the end is dropped.

LINES 28-35
This is the infinite loop performed while waiting for a call to
come in. After an INSTAT, Flag 5 will indicate if the MSRQ
is grounded, indicating the phone ringing. If not, it checks
for low batteries (Flag 49), and clears the IL converter's
buffer in case someone still at home is making an outgoing
call on a Touch Tone phone (Flag 1 would indicate this
condition.)

LINES 36-45
Waits for the ring to stop. Loop count of ring duration is
stored in ROO.

LINES 46-68
Was the detected ring too short? (R00<4?) If so, it probably
was transient line current; go back to waiting for a ring. If
not, wait for nextring. If we loop more than 30 times
waiting for the next ring and it doesn't occur, the impatient
calling party has hung up, and an appropriate expletive is
displayed. PSE, and continue back to LBL 01, wait mode. If
not, we have a valid call on our hands.....

LINES 69-82
The best way to damage circuitry is to answer the phone in
the middle of a ring. So after the ring has stopped, we wait
(LN, e/X) before answering. 0 XEQ "FLIP" means toggle bit
0 in the control latch, which will short out F and RR of the
hybrid transformer and answer the phone. We now have a

bona fide call, so increment RO05, the call count register.

Again we wait a moment (LINES 75-79), and if during that
time any Touch Tone key is pressed, skip the outgoing
message and go directly to the "BEEP!" (If you've ever

grown impatient during extensive debugging, you'll know

why I've included this feature.) Otherwise, "MSG2"
(Message #2, part of a whole library) will speak a message to

the caller.

162

Telephone Answering Machine

LINES 83-86
Immediately before the beep tone, the tape recorder is turned

on (1, XEQ "FLIP") and then, since building an oscillator

was too much trouble, I have the speech chip say "BEEP!"

(LINE 85,86). Really cute, huh?
LINE 87

Control is then passed to "INTT4" (Input Touch Tone,

version 4) which, while the tape recorder is recording the

caller's verbal message, listens in case the verbal message

happens to be comprised of four Touch Tone digits. If it is,

the tape recorder shuts off, Flag 9 is set, the four-digit

number is AVIEW'd, and we return. If not, allow 20

seconds for the caller's message, and return with Flag 9

clear. (See documentation of INTT4 for details.)

LINES 88-96
If there was no Touch Tone activity (Flag 9 clear), GTO 12.

Otherwise, begin a search of the ASCII file "CLIENT" for a

match to the 4-digit code. (Register 7 is a temporary location

for the code while "CLIENT" is made the working file.)
LINES 97-103

If no match is found, then maybe one of the many user's

codes was entered. A GTO IND 07 will search for a 4-digit

global label to execute. If the label is not found, (Flag 25

clear), we GTO 13 which will say "Good-bye" and hang up.

LINES 104-111
At this point a client's 4-digit code has been found in the

"CLIENT" file. The system first says "Thank you" and then

GETREC's the phonetic coding of the client's first name and

says it. Your clients are rightfully blown away.
LINES 112-116

Here, "TIMED" (Time + Day, a subroutine covered in

Chapter 5) is executed. If we've determined that a priority

client is calling, the current time and day is spoken to them

and eventually printed out. If thisis just an ordinary person

(INTT4 comes back with Flag 9 clear), the time and day is

still spoken and will be picked up by the tape recorder, which

would still be on. Then upon playback you'll know when the

calls came in.
LINES 117-129

"RETURN". The program will always return to this point,

163

Control The World with HP-IL

as it performs the vital function of saying "Good-bye" and
hanging up.

LINES 130-147
If the caller wasn't a priority client, (Flag 9=clear), we go
back and wait for another call. If it was, we will store the

vital statistics of the message into memory (so the program

can read the messages back to you later) and print out a
phone message.

The vital statistics of each message are stored into a data register

as follows:

6.17136

PR
Record # last The hour and The day

accessed in minute the call of the week.

"CLIENT" file. came in.

(Points to a

4-digit code.)

The "4111" program will use this information later to read the

client's first and last name, phone number, time and day they

called back to the user. These "compact messages" are stored in

data register R11 and higher.

LINES 148-188

164

If a printer exists, we print out a phone message. Notice I

rely on the FINDAID (Find Accessory ID) command to verify

printer existence because I don't trust Flag 55 for the IL

printer. The remaining lines simply GETREC and PRA

records from the file, and print the current time and date.

Flag 17 is constantly set to nullify the effects of GETREC and

suppress CR/LF on output.

Telephone Answering Machine

"INTT4" (Input Touch Tone, version #4)

NOTE: This subroutine is not to be confused with the Outgoing

call monitor program INTT2, which is a self-contained monitoring

program documented elsewhere.

01*LBL "INTT4" 13 FC? 09 25 48

02 CF 09 14 RTN 26 X<>Y

03 .09 15*LBL 02 27 YTOAX

04 STO 01 16 SF 25 28 GTO 07

05 CF 21 17 4 29*LBL 08

06 CLA 18 INAN 30 AVIEW

07*LBL 01 19 ATOX 31 SF 09

08 INSTAT 20*LBL 07 32 1

09 FS? 01 21 58 33 XEQ "FLIP"

10 GTO 02 22 POSA 34 END

11 ISG 01 23 X<07?

12 GTO 01 24 GTO 08

LINES 1-6
General initializing.

LINES 7-14
Start listening for Touch Tone activity. If flag 1 is cleared

after an INSTAT (=buffer empty), increment a counter (R01)

and INSTAT again. If we have looped 90 times (= about 20

seconds on a 1.5X machine) exit the subroutine.

LINES 15-19
If there is data (Flag 1l=set), input four digits using the

INAN command. Flag 25 is set in case your caller enters

less than four digits; the error will be handled by the main

routine later. The ATOX on line 19 gets rid of the extra

dummy character in ALPHA put there by the Extended 1/0

ROM command.

LINES 20-28
If a 0 (Operator) button is pressed by the caller, it shows upin

the ALPHA register as a colon (:). These lines replace every

found colon with a zero.

LINES 29-34
The number is AVIEW'd for local feedback, Flag 9 is set

indicating valid data in the ALPHA register, the tape

recorder is shut off early, and control is returned to the

calling program.
165

Control The World with HP-IL

"4132"

(The 4-digit code to turn on or off an A.C. device)

O1*LBL "4132" 09 SF 17 17 X<>F
02 CF 09 10 ouTa 18 STO 06
03 2 11 "msMMC'++" 19 PWRDN
04 RCL 06 12 FS? IND Y 20 XEQ "ACCHAR"
05 X<>F 13 " |dMM+" 21 TRIGGER
06 FC?C IND Y 14 FC? IND Y 22 GTO "RETURN"
07 SF IND Y 15 "|S]1+" 23 END
08 "+,Ui~MrL+:+" 16 OUTA

SYNTHETIC TEXT LINES

08: 254, 30, 44, 15, 85, 105, 95, 126, 77, 114,
76, 76, 14, 58, 3. "Device number"

11: 248, 109, 115, 77, 77, 67, 39, 18, 3. "one is™"
13: 245, 127, 100, 77, 77, 3. "on"
15: 245, 127, 83, 93, 93, 3. "off"

Tuann You,
Naney,

WQORM.&mAuj
166

Telephone Answering Machine

LINE 2
Clear Flag 9 so "ANSWER" won't try to print a phone

message later on.
LINES 3-16

Flag status from R06 is recalled and Flag 2is examined and

flipped. It then says "Device number one is", followed by

"on" or "off' depending on the status of Flag 2.

LINES17-21
New flag status is stored back in R06 and output to control

latch, thereby fulfilling the prophecy just spoken.

LINE 22
Going back to "RETURN" in the driver program terminates

calling session.

"4111"
(This is the user code to read back your priority messages to you

while you are away from your home or office.)

01*LBL "4111" 22 X=07? 43 OUTA

02 CF 09 23 GTO "RETURN" 44 2

03 "TIME" 24 X<>Y 45 +

04 RCLPTA 25 1 46 SEEKPT

05 "iwmC+.++" 26 - 47 GETREC

06 RCL 08 27 1 E3 48 XEQ "READ1"

07 INT 28 / 49 RCL IND 08

08 ENTER" 29 11 50 FRC

09 ENTER" 30 + 51 100

10 11 31 STO 08 52 *

11 - 32*LBL 01 53 STO 01

12 SEEKPT 33 RCL IND 08 54 SF 08

13 ARCLREC 34 INT 55 XEQ "TIMED"

14 SF 17 35 "CLIENT" 56 ISG 08

15 OUTA 36 SEEKPTA 57 GTO 01

16 "LB_K"+'++" 37 GETREC 58 11.999

17 1 38 2 59 STO 08

18 X=Y7 39 + 60 GTO "RETURN"

19 "LB_++++" 40 SEEKPT 61 END

20 OUTA 41 ARCLREC

21 RDN 42 SF 17

167

Control The World with HP-IL

SYNTHETIC TEXT LINES

05: 248, 105, 119, 109, 67, 27, 46, 15, 3. "You have"
16: 249, 76, 66, 95, 75, 94, 26, 39, 31, 3. "messages."
19: 247, 76, 66, 95, 11, 30, 26, 3. "message."

LINE 2

CF 09 so the main routine won't try to print a message.
LINES 3-23

The system will say "You have (# of messages) messages".
The number is based on the value of the loop counter stored
in R08. The "TIME" ASCII file is needed so it knows how to
say a number, and lines 17-19 are used to replace
"messages” with "message" if only 1 message has been
received. If the number of messages =0, subroutine exits.

LINES 24-31
Constructs an ISG loop control to know when to stop reading
messages. Stored in R08.

LINES 32-43
Makes "CLIENT" the working file, takes the integer portion
of the "compact message" (see "ANSWER" lines 130-147) and
uses it as the record pointer. The phonetic form of the first
and last names are put into ALPHA and spoken.

LINES 44-48
The phone number of the client is read from the client file
into ALPHA, and READI is called which takes the ALPHA
string of digits and reads them one at a time.

LINES 49-55
The time and day of week are then decoded from the compact
message and spoken. Flag 8 at line 54 tells "TIMED" to
recite the time and day found in the X register rather than
the current time and day.

LINES 56-59
Loop back and read the rest of the messages. If they've all
been read, reset the message index register (R08) to indicate
no priority messages. This way if you call up a second time
to see if more messages have arrived, you won't have to hear
the original ones again.

LINE 60
Jump to "RETURN", the exit point of the main routine.

168

Telephone Answering Machine

Program READI1 "reads" an alphanumeric string and pronounces

everything. It is called from "4111" when reading the list of

priority clients back to the user over the phone.

01*LBL "READ1" 13 X<>Y 25 FRC

02 ALENG 14 / 26 STO 03

03 ENTER" 15 STO 03 27 RDN

04 ENTER" 16 FS2C 10 28 INT

05 1000 17 XEQ "THANK" 29 SEEKPT

06 / 18 "TIME" 30 GETREC

07 1 19 RCLPTA 31 SF 17

08 + 20*LBL 07 32 OUTA

09 STO 04 21 RCL 03 33 ISG 04

10 X<>Y 22 10 34 GTO 07

11 107X 23 * 35 END

12 ANUMDEL 24 ENTER"

"ACCHAR" is a handy program for "outputting” a decimal word
without using the ALPHA register. It undoes the default status,
outputs the word to the control latch (not the synthesizer), and then

resets the previous status. The default status is:

AUTOIO So both the printer and IL Conv. can be
addressed without SELECT'ing each device.

Flag 21 Clear So AVIEW's won't be printed.
TRIGGER last Data gets routed to the speech chip by default.

Recommended usage: PWRDN, ACCHAR, TRIGGER.

01*LBL "ACCHAR" 04 ACCHR 07 END

02 SF 21 05 AUTOIO

03 MANIO 06 CF 21

"FLIP" toggles a bit in a control word without disturbing the other

control bits.

01*LBL "FLIP" 05 SF IND Y 09 XEQ "ACCHAR"

02 RCL 06 06 X<>F 10 TRIGGER

03 X<>F 07 STO 06 11 END

04 FC?C IND Y 08 PWRDN

169

Control The World with HP-IL

Finally, MSG2 is a subroutine which says, "Hello. This is Gary's

Hewlett Packard. At the tone please leave your name, message,

and telephone number.” and returns. Rather than give a
line-by-line analysis, I'll show the phonetic symbols of the text
lines since I'm sure no one else will want to use this message

without modification. The two routines at the end, "BYE" and

"THANK", are called upon at other times to appease your callers.

01*LBL "MSG2" 22 5

02 SF 17 23 LN

03 " [BX+m~~~~~ yg_C" 24 E~X

04 OUTA 25 LN

05 "'+~\AQ@k|iRC" 26 E™X

06 OUTA 27 "+++g”~Z+++oMM"C"

07 "[iwXA]jJCH+++:++" 28 OUTA

08 OUTA 29 "+4++/&|+MrLLN: +"

09 5 30 OUTA

10 LN 31 RTN

11 E™X 32*LBL "BYE"

12 LN 33 "++4++NUiC"

13 E~X 34 SF 17

14 LN 35 OUTA

15 E™X 36 RTN

16 "~~njCCysC++mMM~" 37*LBL "THANK"

17 OUTA 38 SF 17

18 "eX1++X1iOC" 39 "+4+++++<>+"

19 OoUTA 40 OUTA

20 ")5++MaL+" 41 END

21 OUTA

Line 3: H EH1 L O W - - - - -

91 66 88 166 109 126 126 126 126 126

TH I S -

121 103 95 67

Line 5: I Z -

39 18 126

170

Line 7:

Lines 9-15

Line 16:

Line 18:

Line 20:

Lines 22-26

Line 27:

Line 29:

Line 33:

Line 39:

Telephone Answering Machine

G EH1 EH3 R E1l Y Z -

92 65 64 107 124 105 82 67

H Y Ul L EH1 T -

91 105 119 88 65 106 67

P AE K ER D -

165 174 153 58 30 3

Slight delay.

AE T - - TH UH -

110 106 67 67 121 115 67

T O W N N -

170 166 109 77 77 126

P L E Z - L E Y v -

101 88 108 146 131 88 108 105 79 67

Y 01 R - N A AY M -

41 53 43 3 77 96 97 76 190

Brief pause.

M EH1 S I D

140 130 159 103 94

J p— -— -—

90 190 190 190

AE1l N N D -

111 77 77 94 67

T EH1 L EH2 F O N -

170 130 152 129 29 38 13 3

N UH1 M M B ER

77 114 76 76 78 58 3

G 00 D B AH1 Y -

28 23 30 78 85 105 67

TH AE Y N K - Y U W

185 174 169 141 153 131 41 40 45 3

Control The World with HP-IL

Other useful information:

Register Usage:

ROO ISG register to determine how long the relay's been down.
RO1 # of rings detected; timing loop for INTT4.

RO2 Loop address of IL Converter.

RO3 String to be read in READL1. (Temporary.)
R0O4 Looping control for READ1.
RO5 Number of calls received.
RO6 Last byte written to the control latch.
RO7 Temporary location for ASTO'ing the 4-digit code.
RO8 Message index register, for storing priority client's

messages.

R11 and up: Priority client's messages.

Flag Usage:

0-7 Used with INSTAT.

8 Tells TIMED to read the time in X rather than the current

9
time.

There exists valid INTT4 input.

Concluding Remarks

I believe the Austrian Emperor Joseph II summed it up pretty

well when he said, "Well then...there it is!".

Photo of completed
answering machine
circuit. Hy brid
transformer is shown in
the lower left-hand

corner.

Telephone Answering Machine

173

Control The World with HP-IL

174

Chapter Eight

KEYBOARDS FOR THE 71

"A Keyboard? How quaint!”
--Scotty

Described here is the first of two types of keyboards that

compensate for one of the 71's drawbacks: namely, its own

keyboard. The second type, which is easier to implement, tells how

to convert an IBM (YECCH!) PC to a dumb terminal and is covered

in Chapter 10.

But here we get more creative than just hooking up a dumb

terminal. Nothing's more counterproductive than confining your

71 to a wall outlet (and consuming a billion times more power) just

so you can enhance your productivity. In my quest to preserve

portability, I have built some keyboards that not only run on

batteries, but generate the weird escape sequences that the 71

expects to see as well. Your success at duplicating these efforts

depends on your ability to scavenge at swap meets, surplus shops,

and garage sales in order to find a suitably modifiable keyboard.

And because every keyboard found will require its own unique

solution to attach it to the 71, a thorough understanding of the

principles described in this chapter will help you hook up any

keyboard you happen to possess.

The first keyboard that this chapter will describe is the easiest

type to hook up: the parallel-encoded kind. It is good for very basic

work, but for serious development work further improvements are

necessary, and these are described in the ADD EPROMS FOR

ENHANCEMENTS section. Finally, the Nth degree of complexity

(well, it may seem like it, anyway) is covered as I describe my

favorite keyboard, the one originally designed for the Otrona

175

Control The World with HP-IL

Attache computer.

The 'KEYBOARD IS' Lexfile

Before we get to the hardware, we must first know what the 71

expects to see so we can accommodate it as much as possible. Here

we make use of HP's KEYBOARD IS lexfile, which is available

either on magnetic cards from HP or in the FORTH/ASSEMBLER
ROM. HP designed this Lexfile to allow larger terminals or

computers (in conjunction with the DISPLAY IS command
already resident in the 71) to act as the 71's keyboard and display.

Used in this way, a programmer might be able to overcome the 71's

human interface limitations and actually produce some code in

reasonable time without raising his or her blood pressure.

Like most general-purpose interfaces, HP had obstacles to

overcome to make this type of input work with all possible

keyboards. Most 'smart’ keyboards that generate their own

characters adhere strictly to the ASCII standard, which defines

how the characters A-Z,a-z,0-9,!-+ and the first 15 control

characters are represented via 7-bit binary numbers.

Unfortunately, all of the other keys such as cursors, functions,

Tab, CAPS LOCK, and even backspace are not as rigidly defined;
these can vary from manufacturer to manufacturer. The 71

represents these in its own individual fashion.

How is a normal keyboard supposed to send these crucial

non-standard keystrokes? HP's solution was to insist that the user

precede every special key with the ESCAPE keystroke. The 71

would then cross-reference any escape-preceded keystrokes with

those already defined in an "escape" buffer and, if a match is

found, "press" the predefined button. A sequence is defined in the
escape buffer by entering a line which looks like this:

ESCAPE "A",50

After the above assignment is typed into the 71, hitting the external

keyboard's ESCAPE key followed by the "A" key will activate key

#50 on the 71; the Up Arrow key. (Refer to the 71's Keyboard map in

their instruction manual for how to specify other keys.) In this

manner, any 71 function (such as ATTN, Command Stack, I/R,

176

Keyboards for the 71

and the cursors) could be executed from the remote keyboard. As

will be seen shortly, this method has its drawbacks.

The Parallel Keyboard

There are generally 3 different types of keyboards that are sold

as surplus: The "matrix only" kind, which is a board full of

switches without any support components (requires too much

work; avoid this type); the "serial" kind, which has between 3 and 5

wires in it's host-going cable and sends the information like an

RS-232 link; and the parallel kind, which is by far the easiest to

hook up since it transfers data the same way as the GPIO: 8 bits at

a time with a 9th line acting as a strobe.

Consider the parallel keyboard presented below. This particular

keyboard has 10 labelled function keys, special characters, a

numeric keypad, and an excellent keyfeel, making blind tying a

cinch.
Hooking up a parallel-encoded keyboard is exactly like attaching

a printer to the GPIO, only the data goes in the other direction.

Parallel keyboards are already programmed, off-the-shelf, to

generate ASCII characters when the appropriate keys are

pressed. Therefore, connecting it is as simple as the drawing in

Figure 8-2:

DAO DI

DA1 D2
10

DA2 D3
82166A [pas DA" Acme Parallel

12 Keyboards, Inc.
HP-IL DA4 os| .

1

CONVERTER

|

DAS De| ",
1 RONN

7 NNNNolNNas
DA7 ps|'° NNAN NN16 \\\\\\..\‘\\\..\\ PO by \‘.\\

DAVI STROBE NotNARSRONAGUNUNCRLAL&N
§SNSN\\\\\}\\‘\\\‘\\\\§\\\\\;\\\\\}\\

|

SND awnl NshilNARBNIV F]2 Rshify
4 ARARNN

Vce— i |

Vce

Figure 8-2

I The Simplicity
of Attaching a
Parallel Keyboard.

I4||

177

Control The World with HP-IL

Figure 8-1: A typical Parallel Keyboard.

and the software commands are as simple as:

10 A=DEVADDR ("GPIO")

20 SEND MTA LISTEN A DDL O DATA 226,16,24 UNL UNT

30 KEYBOARD IS :GPIO

Obviously, a few key words (again, no pun intended) of

explanation are in order here. If the KEYBOARD IS routine is to

function efficiently, the GPIO must be modified to flag service

requests whenever there is outgoing data in its transfer buffer, and

to send End-of-Data frames when the buffer is empty. Both these

tasks are accomplished by the DDL 0 command of line 20 above,

which sets the following attributes:

226--GPIO will send service requests when any computer-bound

data is waiting in the buffer, in addition to any normal status

request.

16---Send an End-Of-Data frame if the buffer's empty.

178

Keyboards for the 71

94---Strobed handshake, positive data and negative handshake

logic.

Every time the GPIO is powered up, the configuration program

must be run (but you already knew that!). To make things easy, I

include in this program all the ESCAPE buffer definitions,

although these really only have to be run once.

While defining the ESCAPE buffer definitions, another problem

(for this keyboard, anyway) came up: How can I define a

non-standard keystroke in the ESCAPE buffer if I don't know what

decimal byte the keyboard sends out?

I answered this question by putting my 41 on the loop and, using

a wonderful feature of the IL Development ROM, put it into SCOPE

mode. This mode lets you look at individual HP-IL frames as they

pass through the loop. (It also allows you to save these frames in a

buffer for future observation, generate custom packets of your own,

watch for interrupts, and a host of other tasks.) Anyway, every

time I hit a key of unknown keycode, I'd watch the 41's display for

the decimal byte, embedded in each DAB frame. These numbers

were then used in the CHR$()'s needed for the ESCAPE buffer

definitions in the program below, which configures the GPIO as

well as defining the escape sequences:

5 ! Program KEYBD implements KEYBOARD IS on the

Microswitch keyboard.

10 RESTORE IO @ RESET HPIL

20 KEYBOARD IS *

30 A=DEVADDR ("GPIO")

40 SEND MTA LISTEN A DDL O DATA 226,16,24 UNL UNT

50 SFLAG -15

60 KEYBOARD IS :GPIO

70 ESCAPE CHR$ (144),50

80 ESCAPE CHR$(145),51

90 ESCAPE CHRS$(147),103

! assigns up arrow key

! assigns down arrow

! assigns backarrow to

! destructive backspace.

100 ESCAPE CHR$ (146),48 ! assigns right arrow.

110 ESCAPE CHR$(9),43 ! assigns tab key to ATTN.

120 ESCAPE CHRS$ (238),43 ! assigns SHIFT TAB to

' ATTN.

1
130 ESCAPE CHRS$ (99),104 ! assigns esc 'c' to -CHAR.

179

Control The World with HP-IL

140 ESCAPE CHRS$ (67),104 ! assigns 'C' to -CHAR.
150 ESCAPE CHRS$ (169),162 ! assigns left blank key

! to all the way up.
160 ESCAPE CHRS (185),162 ! assigns shift left blank

! key to all the way up.
170 ESCAPE CHRS (163),163 ! assigns right blank key

! to all the way down.
180 ESCAPE CHRS$(179),163 ! assigns shift right

! blank key to all the way

! down.
190 ESCAPE CHR$ (171),150 ! assigns home to command

! stack.

200 ESCAPE CHR$ (187),150 ! assigns shift home to

! command stack.

210 ESCAPE CHRS$ (8),159 ! assigns back space to

! far left.
220 ESCAPE CHR$ (237),159 ! assigns shift backspace

! to far left.
230 ESCAPE CHRS$ (164),160 ! assigns back tab to far

! right.

240 ESCAPE CHRS$ (180),160 ! assigns shift back tab

! to far right.

250 ESCAPE CHR$ (108),107 ! assigns esc 'l' to

! -LINE.

260 ESCAPE CHR$ (76),107 ! assigns esc 'L' to

! -LINE.

270 ESCAPE CHR$ (215),106 ! assigns F7 to LC.

280 ESCAPE CHR$(231),106 ! assigns shift F7 to LC.

290 ESCAPE CHRS$ (216),105 ! assigns F8 to I/R.

300 ESCAPE CHR$(232),105 ! assigns shift F8 to I/R.

310 CONTRAST 15

320 END

330 SUB KEYOFF

340 KEYBOARD IS *

350 CFLAG -15

360 CONTRAST 9

370 BYE @ END SUB

You might notice some other additions, too: FLAG -15 (lines 50 &

350) switches to lowercase mode, and the KEYOFF subroutine at

line 330 (activated by command CALL KEYOFF) restores the

180

Keyboards for the 71

changed parameters when finished.

Other Potential Problems

In theory, parallel keyboards are the easiest to hook up and use.

In reality though, as we have just seen, differences in individual

keyboards can cause problems in implementation. Just like the
non-ASCII keys producing arbitrarily defined output, there also
exists the problem of inadequate pulse widths coming from the
keyboard's STROBE line.

In the past, we dealt with inadequate handshake pulse widths

with something called a pulse expander, which will takes any

length pulse as input and outputs a nice, long 100ms pulse width
so the GPIO will accept it.

The specs of my particular keyboard state that the pulse width it

generates lasts anywhere from 10 to 90 milliseconds, which means

there exists about a 63 to 37 chance of NOT meeting the GPIO's

requirements and losing your data. This necessitates the
additional circuitry shown in Fig. 8-3:

10°<11 STROBE

.01 uF

—
1

Gnd
-_— 2

3 Trig 200KQ

DAVI ——°<|—4 Out_
8 9 [Rst yp 0.47 uF

Figure 8-3
Pulse
Expander

This circuit is identical to the one introduced in Chapter 4, and

is necessary because if the pulse width is less than 60 ms, the

181

Control The World with HP-IL

GPIO thinks no keys have been pressed and the whole system will
quietly ignore you.

Now that the parallel keyboard has been hooked up and the
pulse expander (if it was needed) has been added and tested, all
one has to do is just power up the keyboard (& the GPIO, too!), run
the setup program, and type away! Notice how much faster you
can tell the 71 what to do! Notice the 32-character "type-ahead"
feature, thanks to the GPIO's 32-character transfer buffer.

There are, regretfully, drawbacks. The keyboard's ESCAPE
key, unlike the more-famous CONTROL key, must be pushed and
then released before the next key depression. This means that
each Backarrow (non-destructive backspace) requires 2 keystrokes:
ESC and <--. When editing textfiles, this can be a very frustrating
procedure. Specially defined function keys and those important
cursor keys share the same frustrating qualities. These seemingly
trivial drawbacks are so constraining that the rest of this chapter
will be spent explaining a method of overriding them.

Add EPROMs For Enhancements

(Just What The 71 Wants!)

If the 71 expects to see all useful non-alphanumeric functions
presented as 2-character ESCAPE sequences, wouldn't life be
wonderful if we had a keyboard that generated 2 such characters
for every keystroke? (It was a rhetorical question; the answer is

<
(2]
p=}
m

<

S
o

&
E

:
2|

3 :
< g Figure 8-4
S i Sending Two
- 8-Bit Words

On Every
Keystroke.

182

Keyboards for the 71

"Yes".)

Through the use of a few extra parts, including some custom
2716 EPROMS, we can take any parallel keyboard and turn it into a
"custom made" job, where all key definitions (especially the

cursors) can all take place with a single keystroke!
This method uses a little trick to generate two 8-bit words for

every single keystroke. Examine the diagram in Figure 8-4. Each

time a key is pressed, a unique ASCII code appears on the 8 data

lines. Normally,this code is fed directly to the GPIO; but this time

we're treating it as an address to the two EPROMs. The EPROMs,

functioning as an electronic lookup table, supply a 16-bit word to

the GPIO, which has previously been configured to have a 16-bit

word size. This means that for every 8 bits that come in, we get 16

user-specified bits coming out.

You can probably guess what happens next. The GPIO sends

one 16-bit word to the 71, but the 71, expecting input in the form of

8-bit words, takes this double-sized word and treats it as 2

CONSECUTIVE bytes.

Let's take an example. If the right-arrow key is pressed on my

particular keyboard, the on-board logic generates a decimal byte of

146 on the 8 data lines, and then pulses the STROBE line

momentarily. The EPROMS immediately assume this is an

address (since, after all, these data lines are being fed to their

address lines), and generate a pre-programmed 16 bit word, Hex

1B 2A, to the GPIO. Because the KEYBOARDIS function in the 71

only expects to see 8-bit words, it treats these 16 bit words as 2

words: 1B (CHR$(27)) which is Escape, and 2A (CHR$(42)) which is

an arbitrary ASCII character. The KEYBOARD IS escape key

buffer has been told beforehand using the ESCAPE command that

ESCAPE 2A should be interpreted as Right-arrow, so then it

performs that function. If the Right-arrow key is held down, the

repeat function takes effect and multiple escape sequences are

generated, all with one key!

In the case of sending out the letter 'A’, no escape sequence is

needed. The two hexadecimal bytes sent are FF 41, where FF is a

dummy byte which is (luckily) completely ignored by the 71, and 41

is the ASCII code for 'A'. Although twice as many characters per

keystroke are being sent with this method as compared to a normal

183

Control The World with HP-IL

keyboard, there is no noticeable decrease in speed.

Because every keyboard will generate different sequences for

cursors, and because you may wish to define unique key sequences
to activate the 71's functions, a custom set of EPROMs must be
developed for each individual application. It is not a difficult thing
to do; I would imagine the hard part would be for the average user
to get hold of an EPROM burner. Deciding how to map out the
EPROMs is an easy task. Just make a list (and check it twice):

WHAT T WANT TO PRESS WHAT I WANT IT TO DO

'DEL' ATTN

'LINE FEED' COMMAND STACK

'TAB' I/R

CNTRL-C —-CHAR

CNTRL-L -LINE

‘At A

'a' g-A (shifted)

Then determine what decimal bytes the keyboard normally

generates when the keys in the left column are pressed. These will
become the EPROM addresses. Then go to the right column, and

specify what you want the 71 to see when the key on the left is

pressed. For example, when the 'A' key is pressed, we actually

want the 71 to receive an 'A’, so we feed it FF 41. (FF is a dummy

byte used when no escape sequence is desired. 41 is the

hexadecimal ASCII code for 'A’.) Another example: Hitting the

'DEL' key produces a decimal byte of 127; so that goes into the left

column. We want to generate an escape sequence for this one: 1B

(ESCAPE), CB (arbitrary character). This goes into the right

column. We're not done yet! Any escape sequence must also be

defined in the ESCAPE buffer in order to be reassigned by the 71. So

we must now also add 1 line to the configuration routine:

ESCAPE CHRS (127),43

which tells the 71 to press its ATTN key (key #43) every time it

encounters the sequence ESCAPE CHR$(127) (in hex, it looks like

184

Keyboards for the 71

1B 7F).

When filling out your map, be sure to cover every possible key
sequence; both shifted and non-shifted letters, control- , shift- , and

control-shift- . Every hex address (every possible keyboard output)
should generate some sort of code, even if you think you'll never
use it. (A sample of a complete EPROM map is shown later in this

chapter.)

Matrix-Only and Serial Keyboards

Earlier I said not to bother with these, and now I'm going to go
back on my own advice and discuss them at length. You see, my

favorite keyboard in the whole world had characteristics of both the
above boldfaced adjectives. This keyboard (when properly
modified) works with the 71 so nicely, and it has just the right size
and power consumption, that not to discuss it would be a

disservice!

Most keyboards you're likely to find are of the matrix-only type,

as shown in Fig. 8-5.

Multi-pin

Connector

Figure 8-5
A matrix keyboard.

185

Control The World with HP-IL

As can be seen, pressing a key connects one of the row lines to one

of the column lines, and it requires additional circuitry to detect
which key was pressed and to translate it into an ASCII character.
The previously described parallel keyboard had such circuitry
already on board; and therefore was easier than = to hook up.

If you do find such a keyboard (you'll know when you have it;

there are no electronic components at all), Fig. 8-6 shows an
example of what is needed to decode it:

Figure 8-6
A Matrix Keyboard
Encoder.

111111

1 L SHIFT

1

L

1
-
O
F
-
8
D
E
C
O
D
E
R

1-OF-8 DECODER

 EPROM1 2716 EPROM?2 2716

STROBE I DATABUS A DATA BUS B 1

186

Keyboards for the 71

This simplified setup works as follows: the keyboard matrix has
two 1-of-8 decoders driving its rows and columns. These decoders

are designed to route a signal to any of eight different places,
depending on the status of its three address lines. In the case of
the vertical decoder, it takes the +5v from the input marked "x"
and, depending on the state of its three address lines, redirects it to

one of the four wires connected to the rows. The bottom decoder
sends its information the other way: it scans the six columns of the

keyboard matrix and sequentially routes any signals it finds to the
n_n
x" pin emanating from the bottom. So in normal operation, the

highest bits from the eternally-running counter cause the 5v at "x"

to sequentially appear at each of the rows, and the lowest three bits
allow the status of each column to sequentially appear at the "x" of

the column decoder.

If a key has been depressed, eventually the counter will generate

the proper code to let the 5v from the row decoder reach the "x"

output of the column decoder, which we rename as STROBE. This
tells the world, "Hey! Somebody's pressed a key, and if you look at
the counter's bits right now, you'll see a bit pattern which uniquely

defines the pressed key!". The two EPROMS at the bottom are, in

fact, doing just this. They are constantly translating this unique

keycode, as well as the status of the SHIFT and CONTROL keys,

into ASCII code. If a GPIO were to look at this system from the

bottom, it would see 16 data lines and a strobe. And when the

strobe goes to +5v (= "1"), a 2-byte escape sequence appears at the

output!

The World's Best Keyboard

If you thought that was complicated, take a look at Fig. 8-7 (next
page), which shows the detailed schematic implementing this

keyboard scanning method without the EPROMS. It is easy to see

that, even though a method exists to transform a matrix-only

keyboard into something that can work with the 71, it is really a

great deal of trouble.

Imagine my joy when I stumbled upon a tiny keyboard which

already had the necessary circuitry built in! These schematics

actually describe the keyboard from an old Otrona Attache, a

187

Control The World with HP-IL

KEYSWITCH DETAIL

4051 u9

i.

[t
SHIFT — SHIFT
(RIGHT) (LEFT)

Figure 8-7: Schematic for the Otrona Keyboard

188

Keyboards for the 71

superb portable computer whose key feel and size I had always
admired. (It's too bad the firm folded; it wasn't for lack of a

superior product.) The keys feel wonderful, and all the circuitry is

constructed in power-saving CMOS. The only problem was that

this was a serial keyboard; the unique keycode goes through a
parallel-to-serial converter before being shipped to the host
computer. (In this instance, this setback is easily remedied by

removing said serial converter, as described later.)

Without going into great detail about how the gates and flip-flops
work, the components function as follows: All the components on

the bottom of the diagram form a clock, whose output goes directly

to pin 10 (the input) of the 4040 CMOS counter chip. The keyboard

scanning behaves exactly as described above, except the counter's
output is fed not to two EPROMSs, but to a 4021 parallel-to-serial
converter!

Here, then, is what to do in order to interface with a serial

keyboard: simply remove the parallel-to-serial converter from the

circuit board. We are now back to parallel again. (Wasn't that
easy?)

The dashed box around the 4021 IC represents the component to
be removed and all the wires normally attached to it. In this

application the box is removed and replaced with the two EPROMs

and three gates as shown if Fig. 8-8. These parts take the keycode

as input and output two parallel 8-bit ASCII characters, complete

with the required handshake.
Implementing this scheme requires slight modification of the

Otrona keyboard, whose components are well labeled. First,

transistors Q1 and Ul, the only two on the circuit board, should be

removed to cut current consumption. Next, U7, the

parallel-to-serial converter described above, must be de-soldered

and removed from the board. Jumper wires replace this IC and

carry signals over to the EPROM's address inputs as in Fig. 8-6
and detailed in Fig. 8-8. Pin 9 from U7 is used as a handshake
signal. It is ANDed with the RDYO signal from the GPIO. (Notice
the use of NOR gates for this function to reduce the chip count.)
The third handshake line, DACO, is connected to resistor Rl as

shown in the schematic. This way we make use of the otherwise

unused NAND gate (configured as an inverter) for positive

189

Control The World with HP-IL

Figure 8-8
Addifional Otrona yROMY_ 9Circuitry, ————————— A7 Veo 3—————————{ A6 A8 23—
gAs A9 3§—<L
gA4 Vep Po—
—————das o€ Prs1
————— A2 A0 Hig—¢—
sAl CEFT7T pa7 =~——g Ao o7 Ps

oA

: 10 o 06 15 8:2
11: o1 05 :]314_DA4

2 02 Q415 pas DATArc G\D o3 g———=~ BUS
L A

DA2
DA1
DAO

_ EPROM2 5y
7

1 < 24- >L] A7 Vee L2
2 fis_._ A6 A8 jr
> 4{ A5 A9 321—'

13 soar PRar|” - A3 CEqg Yr g apppt——|! o Al CE N7 o7 P =—————————+—— g~ o7 316—

10[: 00 o6 :15 gfig

FROM oo 01 DM

|

pra12 13 DA3
4021 aNo sH BUS
(U7) - DA2 B

DA1
DAO

9 2 3 6 49 101 5 8

— E, DAVI

RDYO |pOWER(See Fig. 87) DAL AnD
16

HANDSHAKE
8

Vch

—
cwt

190

Keyboards for the 71

handshake logic.

There's also a potentiometer, R9, which is used to control the

speed of the repeat function. I recommend slowing it down to

match the receiving speed of the 71, so the cursor doesn't move
forever when the key is released.

The configuration program below performs exactly the same

functions as the one presented earlier, except it is customized for

the Otrona keyboard. (See the end of this chapter for a list of the
Otrona's EPROMs.)

10 ! "OTRONA"™ setup program for Otrona Keyboard.

20 RESET HPIL @ RESTORE IO

30 KEYBOARD IS *

40 A=DEVADDR ("GPIO")

50 SEND MTA LISTEN A DDL O DATA 226,16,30 UNL UNT

60 SFLAG -15

70 KEYBOARD IS :GPIO

80 ESCAPE CHRS$(41),50 ! Assigns up arrow key

90 ESCAPE CHR$(40),51 ! Assigns down arrow key

100 ESCAPE CHRS$(42),48 ! Assigns right arrow key

The world's best keyboard.

191

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

192

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

Control The World with HP-IL

CHRS (43) ,47

CHRS (203), 43

CHRS$ (194),162

CHRS$ (226) , 162

CHRS (193),163

CHRS (225),163

CHRS (10), 150

CHRS (196),159

CHRS (228) ,159

CHR$ (195),160

CHRS (227) ,160

CHRS (76) ,107
CHRS (108),107
CHR$(67),104
CHRS (99),104
CHRS (202),106
CHRS (234),106
CHRS (9), 105
CHRS (33),103

CHRS$ (83),102

CHRS (96) ,78

CHRS (126), 80

CHRS (92),92

CHR$ (124),93

Assigns

Assigns

Assigns

the way

Assigns

all the

Assigns

left arrow key

DEL key to ATTN

shift up key to all

up
LC shift up key to

way up

shift down key to

all the way down

Assigns LC shift down key

to all the way down.

Assigns line feed to

Command stack.

Assigns shift left to far

left.

Assigns LC shift left to

far left.

Assigns shift right to far

right.

Assigns LC shift right to

far right.

Assigns CNTL L to

Assigns LC CNTL 1

Assigns CNTL C to

Assigns LC CNTL c¢ to -CHAR.

Assigns CAPS LOCK to LC.

Assigns LC CAPS LOCK to LC.

Assigns TAB to I/R.

Assigns backspace to

destructive backspace.

Assigns CNTRL S to SST.

Assigns 'Back Apostrophe'

to that character using

text editor's keys.

Assigns Shift Tilda to same

character using text

editor's keys.

Assigns backslash to same

character using text

editor's keys.

Assigns Shift "two vertical

segments" to same chars

-LINE.

to -LINE.

—-CHAR.

Keyboards for the 71

! using text editor's keys.

350 DELAY .5,.05

360 END

370 SUB KEYOFF

380 KEYBOARD IS *

390 CFLAG -15

400 BYE @ END SUB

MappingOut the EPROMS

Probably the most complex and tedious task about converting an
arbitrary keyboard into a 71-compatible one is figuring out what
the EPROMs should contain. To that end, I have written a small

program which generates a form you can fill out. It was originally
written for the Otrona keyboard, which the SHIFT and CONTROL
prefixes being inserted into predictable places. Just attach a
ThinkdJet (or other 80-column printer) to the 71, enter a "PRINTER

IS PRINTER", and run the following program:

10 ! PROGRAM FORM

20 ! PRINTS TABLE FOR MAPPING OUT OTRONA KEYBOARD.

30 STD

40 CALL HEADER

50 FOR Y=1 TO 255

60 PRINT TAB(6); ":"; TAB(14); ":"; TAB(29); ":";

TAB(52); ":"; TAB(66); ":"; TAB(73); ":";

TAB(80),; ":"

70 ENDLINE ""“

80 PRINT Y; TAB(6); ": "; DTHS(Y): TAB(2),; ": ";

90 ENDLINE

100 LET B=Y

110 CALL BINARY (B)

120 PRINT TAB(17); ": ";

130 IF FLAG(2,0)=1 THEN PRINT "CNTRL ";

140 IF FLAG(1,0)=0 THEN PRINT "SHIFT ";

150 PRINT TAB(40); ": ", TAB(54); ":"™; TAB(61); ":";

TAB(68) ; "Ly

160 PRINT

170 PRINT TAB(6); ":"; TAB(14); ":"; TAB(29); ":";

TAB(52); ":"; TAB(66); ":"; TAB(73); ":";

193

Control The World with HP-IL

TAB(80); ":"

180 PRINT

190 IF MOD(Y,15)=0 THEN PRINT CHR$ (12) @ CALIL HEADER
200 NEXT Y

210 END

220 SUB BINARY (B)

230 AS="#,D"

240 CFLAG 1 @ CFLAG 2

250 FOR X=7 TO 0 STEP -1

260 PRINT USING A$; INT(B/2"X);

270 IF X=7 AND RES=1 THEN SFLAG 1

280 IF X=6 AND RES=1 THEN SFLAG 2

290 B=MOD (B, 2"X)

300 IF X>5 THEN PRINT USING "#,X";

310 NEXT X

320 END SUB

330 SUB HEADER

340 PRINT "DEC HEX BINARY KEY
SEQUENCE CHARS SENT ROM 1 ROM 2"

350 END SUB

A sample of the program's output appears on the opposite page.
The first three columns represent the eight bits generated bythe

keyboard in decimal, hexadecimal, and binary. Notice the two

most significant bits in the binary column have been separated;

this was to help me visually see the effect of the SHIFT and

CONTROL keys of the Otrona keyboard, which are directly
responsible for those two bits. Capitalizing on this, I had the

program automatically fill in SHIFT if bit 8 was zero (that's the

effect when the SHIFT key is pressed), and CNTRL when bit 7 was
one (what happens when the CONTROL key is pressed).

To fill in the table, first press any key on the keyboard and notice

its output. (One easy way to do this is to put a 41 in SCOPE mode

into the loop and watch the data go around; another way is to

program the 71 to read in a byte and display it.) Match this output

with an entry in the left columns; use whichever of the decimal,

hex, or binary columns are appropriate, and mark in the "Key

194

Keyboards for the 71

Sequence" column the key you pressed to generate this table entry.
Next, ask yourself "What character(s) do I want to generate

whenever I press this key?". If you pressed the letter "a", you
probably want the letter "a" to be sent. Mark this in the

"Characters Sent" column. A quick check of the ASCII table in
Appendix F reveals that the character "a" is represented by hex

value 61, and this value goes in the rightmost box, labeled "ROM

2". The "ROM 1" column is filled in with hex FF since the "a" is
all we want. (If we want to send an ESCAPE sequence,it is filled

with a hex 1B.)

Another example: Let's say we want the DEL key to act as the

ATTN key on the 71. First, press the DEL key on the keyboard and

find out what key code it generates. Find this in one of the first

three columns of the EPROM map, and enter "DEL" as the Key

Sequence. This time, we want an arbitrary ESCAPE sequence to be

sent, so in the Chars Sent column, we enter two characters:

DEC HEX BINARY KEY SEQUENCE CHARS SENT ROM 1 ROM 2

1 : 00001 : 0 0 000001 :SHIFT

195

Control The World with HP-IL

ESCape, and decimal 203 (hex CB), an arbitrary character. This
translates to the hex byte 1B in the "ROM 1" column, and the hex
byte CBin the "ROM 2" column. Since this is an ESCAPE
sequence, we must also work this into the configuration program
so the 71 will know to translate this specific code into the ATTN
key. So we add this line to the configuration program:

ESCAPE CHR$(203),43 ! Assigns DEL key to ATTN

It is useful to fill in every possible key sequence. Even if you
have no intention of using, say, the CNTL-SHIFT-TAB
combination, program in an escape sequence there so you may
make use of it later in the configuration program.

If you are trying to map out a keyboard other than the Otrona,
the automatically-included SHIFT and CNTRL keys will no doubt
get in your way, since your keyboard's SHIFT and CNTL key
combinations probably produce very different output. To remove
them from the printed list, delete lines 130 and 140 from the FORM
program listed above.

My Own EPROMMap

Well, here it is finally. This is the EPROM map I produced to go
with the Otrona keyboard. This, in conjunction with the "Otrona"
program listed above, turns this innocent looking keyboard into the
world's best for the 71. (What makes it so good? The size and
keyfeel are wonderful! It's CMOS type integrated circuits
consume so little power that 4 AA batteries will power the thing for
7 months!)

196

Keyboards for the 71

HEX

KEYCODE KEY SEQUENCE ROM 1 ROM 2

00 SHIFT BS FF 08

01l SHIFT TAB 1B C5

02 SHIFT LF 1B cé

05 SHIEFT RETURN FF 0D

07 SHIFT CAPS LOCK 1B c7

08 SHIEFT SPACE FF 20

0B SHIFT ESC FF 1B

oC SHIFT Left Arrow 1B c4

oD SHIFT Right Arrow 1B C3

OE SHIFT Up Arrow 1B c2

OF SHIFT Down Arrow 1B Cl

10 SHIET O FF SE

11 SHIFT 1 FF 21

12 SHIET 2 FF 40

13 SHIFT 3 FF 23

14 SHIET 4 FF 24

15 SHIET 5 FF 25

16 SHIFT 6 FF 26

17 SHIET 7 FF 22

18 SHIFT 8 FE 28

19 SHIFT 9 FF 29

1A SHIFT ' FF 22

1 SHIET ; FF 3A

1 SHIFT , FF 3C

1D SHIFT = FF 2B

1E SHIFT . FF 3E

17 SHIEFT / FF 3F

20 SHIET *° 1B 7E

21 SHIFT A FF 41

22 SHIFT B FF 42

23 SHIET C FF 43

24 SHIFT D FF 44

25 SHIFT E FE 45

26 SHIFT F FF 46

27 SHIEFT G FF 47

28 SHIEFT H FF 48

29 SHIET I FF 49

22 SHIEFT J FF 4A

2B SHIET K EF 4B

2C SHIET L FE 4C

2D SHIFT M FF 4D

2E SHITT N FF 48

2 SHIET O FF 4F

30 SHIET P FF 50

31 SHIFT Q FF 51

197

198

Control The World with HP-IL

SHIFT

SHIET
SHIFT

SHIET
SHIET

SHIET

SHIFT
SHIET
SHIFT

SHIET
SHIET

SHIFET
SHIET

SHIET
CNTRL
CNTRL
CNTRL

CNTRL
CNTRL

CNTRL
CNTRL

CNTRL

CNTRL

CNTRL
CNTRL

CNTRL
CNTRL
CNTRL
CNTRL

CNTRL
CNTRL

CNTRL
CNTRL
CNTRL
CNTRL
CNTRL
CNTRL
CNTRL
CNTRL

CNTRL
CNTRL

CNTRL
CNTRL

CNTRL
CNTRL

CNTRL
CNTRL

=
/
—
N
K
x
K
I
J
C
H
0
D

DEL
SHIFT
SHIFT
SHIFT

SHIFT
SHIFT

SHIET

SHIFT

SHIFT

SHIFT

SHIFT
SHIET

SHIET
SHIFT
SHIET
SHIFT

SHIFT
SHIFT
SHIET
SHIET
SHIET
SHIFT
SHIET
SHIET
SHIFT

SHIFT

SHIFT
SHIFT

SHIFT
SHIET
SHIET

SHIET
SHIET
SHIFT

BS
TAB
LF

RETURN

CAFS LOCK

SPACE

ESC

Left Arrow

Right Arrow

Up Arrow

Down Arrow

~
=
O
o
O
o
O
J
O
W
U
L
T
k
W
N
H
O

N
l

e
S

S
e

o
W
y

FF

FF
FF

FF

FF
FF
FF
FF
FF
1B

FF
FF

1B

1B
1B
1B

1B
1B

1B
1B

1B

1B

1B
1B

1B
1B
1B

1B
1B
1B
1B
1B

1B
1B
1B
1B

1B

1B
1B

1B
FF

FF
FF
FF
FF

Keyboards for the 71

66 CNTRL SHIFT F FF 06
67 CNTRL SHIFT G FF 07

68 CNTRL SHIFT H FF 08
69 CNTRL SHIFT I FF 09
6A CNTRL SHIFT J FF 0A
6B CNTRL SHIFT K FF 0B

6C CNTRL SHIFT L FF 0c
6D CNTRL SHIET M FF 0D

6E CNTRL SHIET N FF OE

6F CNTRL SHIFT O FF OF

70 CNTRL SHIFT P FF 10
71 CNTRL SHIFT Q FF 11

72 CNTRL SHIFT R FF 12
73 CNTRL SHIFT S FF 13

74 CNTRL SHIFT T FF 14
75 CNTRL SHIFT U FF 15
76 CNTRL SHIFT V FF 16
77 CNTRL SHIET W FF 17

78 CNTRL SHIFT X FF 18
79 CNTRL SHIET Y FF 19
7A CNTRL SHIET Z FF 1A
7B CNTRL SHIFT [1B DB

7C CNTRL SHIFT \ 1B DC
7D CNTRL SHIFT] 1B DD

7 CNTRL SHIFT - 1B aAD

7F CNTRL SHIET DEL 1B c9o

Mounting the components onto the Otrona keyboard.

199

200

Control The World with HP-IL

BS

TAB
LF
RETURN

CAPS LOCK
SPACE

ESC

Left Arrow

Right Arrow
Up Arrow
Down Arrow

“
L
o
O
o
~
J
o
O
U
d
W
N
H
O

o
~

~e
O
W
O
U
W
O
o
O
Z
X
I
D
X
R
U
R
H
I
O
H
M
@
B
O
O
W
P
2
\

1B
1B
1B
FF

1B

FF
FF

1B
1B
1B
1B

FF
FF

FF
FF
FF
FF
FF

FF

FE
FF

FF

FF
FF

FF

1B

FF

FF

FF
FF

EFF
FF

FF
FF

FF
FF

FF
FF
FF
FF
FF

FF

Keyboards for the 71

|
—
/
N

X
T
I
g
a
C
H

DEL
CNTRL

CNTRL
CNTRL

CNTRL

CNTRL

CNTRL
CNTRL
CNTRL
CNTRL

CNTRL
CNTRL

CNTRL
CNTRL

CNTRL
CNTRL
CNTRL

CNTRL

CNTRL
CNTRL

CNTRL
CNTRL

CNTRL
CNTRL

CNTRL
CNTRL
ONTRL
CNTRL
CNTRL
CNTRL
CNTRL

CNTRL

CNTRL
CNTRL
CNTRL
CNTRL

BS

TAB
LF
RETURN

CAPS LOCK

SPACE
ESC
Left Arrow
Right Arrow

Up Arrow

Down Arrow

=
N

U
W
N
H
O

S
~e

N
G

QO
E
U
O
O
W
»

FF

FF

FF

rF

FF

FF
FF

1B
FE

FF
1B
1B

1B
1B

1B

1B
FE
1B
1B

1B
1B

1B

1B

1B

1B
1B

1B

1B
1B
1B

1B
1B
1B
1B
1B
1B
1B
1B
1B
1B

1B
1B

1B
1B
1B

201

Control The World with HP-IL

E8 CNTRL H 1B 48
E9 CNTRL I 1 49

EA ONTRL J 1B 4A

EB CNTRL K 1B 4B

EC CNTRL L 1B 4ac

ED CNTRL M 18 4D

EE ONTRL N 1B 4E

EF CNTRL O 1B 4F

FO CNTRL P 1B 50
F1 CNTRL Q 1B 51
F2 CNTRL R 1B 52
E3 CNTRL S 1B 53

F4 CNTRL T 1B 54

EFS CNTRL U 1B 55

F6 CNTRL V 1B 56

F7 CNTRL W 1B 57
F8 CNTRL X 1B 58
F9 CNTRL Y 1B 59
FA CNTRL 2 1B 5A

FB CNTRL | 1B 5B
EC CNTRL \ 1B FC

FD CNTRL] 1B 5

FE CNTRL - 1B 2D

FF TRL DEL 1B D5

Closing Statement

Hooking up a simple keyboard isn't nearly as overwhelming a

task as this chapter may have seemed. It is certainly a worthwhile

endeavor, as it allows easy programming of the 71 while in the lab
without giving up its size advantage in the field.

202

Keyboards for the 71

203

204

Control The World with HP-IL

Chapter Nine

AN ELECTRONIC TAPE MEASURE

Ifyou can't measure it,

you can't control it.

--MacNarama's Management Philosophy

The next two chapters will address a topic that is usually
reserved for larger, faster, and more power-hungry computers:

Real-time I/O (Input/Output). This term means that the computer
can detect and react to signals that are only milliseconds apart,

something the HP-IL interface wasn't really designed to do.
As an example of some of the possibilities, this chapter explains

how to harness Polaroid's ultrasonic transducer (that little gold

disk seen atop the SX-70 autofocus cameras) and allow the 71 to
measure distances of objects by bouncing sound off of them. Using

the same I/O technique, Chapter 10 describes a slide projector

dissolve unit, which is a system that will continuously control the

brightness of 2 high-wattage lamps independently using

pulse-width modulation techniques.

Because these applications far exceed the standard I/0
capabilities of even the 71, two things must be employed to attain

this boost in system performance: 1) heavy use of assembly

language for its inherent speed, and 2) connection of the CPU

directly to the outside world. We'll cover that second topic a little

later on.

The Polaroid Transducer

Back in 1972, Polaroid Co. developed a method of autofocusing

205

Control The World with HP-IL

for their new SX-70 cameras which determined the distance
between the camera and the subject by using sound waves. Using
a specially developed transducer which could actboth as a
transmitter and receiver, 16 ultrasonic "chirps" would be sent out
and the time it took for the sound waves to return would be
measured. The system worked exactly the same way a
mountaineer might measure the distance of an adjacent
mountain: yell something and measure the time it takes for the
echo to come back.

If an object is only five feet away, the echo returns in 9

milliseconds. A 71 using HP-IL, or even a 41 using the Time

Module pads described in Chapter 3, isn't nearly fast enough to

detect this echo. Assembly language routines using the CPU

lines, however, have absolutely no problem.

Polaroid has made their technological development available to

other product designers, and even put together a "prototyping kit",

so people like me could buy just one and play around with it. That

was about 10 years ago; since then TI has produced custom ICs

that make interfacing to the special transducer a much easier

206

An Electronic Tape Measure

task, and today everything needed for playing around costs roughly
1/3 of what it used to. (Refer to Appendix B for cost and
availability.)

XDCR

CR1
160V

CR2
160V

J3
XGND

A schematic of the circuit is shown in Fig. 9-1 above. What

makes this module so wonderful is that it will automatically
increase its sensitivity to the returning echo the longer it waits;

extending its measurement range. Even better is it only takes four
wires to interface the unit to a computer. (And two of them are
power!)

Operation is simple: The controlling computer raises the INIT

line to "1" (=5V). This sets the module about its business of

sending the pulses and detecting their return. As soon as an echo

is detected, the module pulses the ECHO line momentarily, which
the controlling computer will detect. The time lapse between the

INIT and ECHO pulses determine the time for the sound to travel,

and therefore the distance. Piece of cake!

207

Control The World with HP-IL

Assembly Language

The results from a simple speed test should explain why
assembly language is essential for this application. Using HP-IL

and one of the 8-bit ports, I tried to program the 71 to generate a

high-frequency symmetrical square wave by turning one bit on and
off as rapidly as possible. The results, measured on an

oscilloscope, were disappointing: A BASIC program could only
produce a frequency of 22 Hz; the equivalent FORTH program

could only reach 14 Hz. (Although FORTH does indeed run 10
times faster than BASIC, FORTH's ENTER and OUTPUT routines

call similar routines in the BASIC environment, thus making

FORTH slower for I/0 and nullifying one of its traditional

advantages.) The same task in assembly language bypasses HP-IL

altogether and gives an output of 18 KHZ, roughly 800 times faster
than BASIC!!! Where did this square wave appear? It just so

happens that the 71 possesses some internal CPU pins that are

unused and readily accessible! (But more on this later.)
The 71 was selected for these demanding applications for

several reasons: it has unused CPU lines available for input and

output, its clock speed is faster than that of the 41, and the

machine supports assembly language without a lot of excess bulk

(such as a Machine Language Development Lab). This last

attribute can be a mixed blessing; as at this time there is very little

literature (with the exception of Richard Harvey's excellent book,

"The Basic HP-71") to introduce beginners to assembly language
on the 71's custom CPU. Learning from HP's documentation

requires some previous knowledge, a small investment to

purchase their operating system source code listings, and

considerable study time.

(NOTE: Don'tletthis scare you away from exploring the

immense possibilities of assembly language and direct I/O lines!

After all, most of the work has already been done for you; and it is

easier to modify someone's example than to re-invent the wheel.)

Figure 9-2 showsthe layout of the 71's CPU registers. As can be

seen, it is a 64-bit machine with nine general-purpose registers

and an 8-level subroutine return stack. Only two of these, the A

and C registers, are powerful enough to be called accumulators

208

An Electronic Tape Measure

Working Reg's Scratch

<+—— 64 Bits —J <4— 64 Bits —»

A RO

B R1

C R2

D R3

lfl ointer R4

4 bits

20
DATO DAT1| Bits PC

S

L |
Indirect Registers

Status In Out

20 16 12

Figure 9-2
71's CPU
Registers

209

Control The World with HP-IL

due to the factthat the instruction set performs almost all
operations on these two registers. The others are used for
temporary storage, loop control, data manipulation, etc. The
FORTH/Assembler ROM's documentation covers the entire
instruction set and explains their usage much better than I could
do here, so I refer you to that as a companion to reading this
chapter. They do not adequately explain the IN and OUT registers’
function, for which I shall now compensate by using them in an
example.

ori1 \,To
OR12 [Beeper

OR3

OR2

OR1

IRO
ORO

IR15
IR1
IR2
IR3
IR4
IR5

IR6
IR7

C
P
U

IR9
IR10
IR11

IR12
IR13

OR5
OR6 Unused

OR7 (But

OR8 Accessible!
OR9 ¢ !

Figure 9-3
Keyboard Map
and Word Search

210

An Electronic Tape Measure

An Example: AMorse Code Keyer Program

If this will be yourfirst assembly language program, it'll be fun

and it'll give you a feel for it. If it isn't, do it anyway because it will

show how you can directly access some CPU pins otherwise

unreachable using BASIC or FORTH.

The following program turns the 71's keyboard into a Morse

Code keyer, meaning it beeps as long as you hold any key down and

stops when you release it. This deceivingly simple task, which

cannot be accomplished using the 71's high-level languages,

requires some knowledge as to how the keyboard scanning is

performed.

There are twelve dedicated output lines and 16 dedicated input

lines emanating from the CPU for the purpose of keyboard

scanning (among other things). These input and output "words"

are hooked up to the keyboard as shown in Fig. 9-3. When the 71

scans the keyboard to determine if a key has been pressed, the

following sequence of events occur:

1) Line 0 of the output register (called OR0) is set to "1" (which

=5 Volts) via the CPU's OUT=C command. All other outputlines

="0".
2) If a key has been pressed (the space key for example), that key

connects its row to its column, therefore the "1" coming from

ORO will appear at IR7 (input register 7).

3) The CPU looks at input lines 0-13 using the CPU's C=IN

command. If all lines are set to "0", then no key has been pressed

in that row. Ifthat word is not ="0", (as in our example), then

the scanning algorithm concludes that the 7th key (IR7="1") in the

zeroth row (OR0="1") has been pressed. It then jumps to a lookup

table to figure out what that key is supposed to do.

4) If no keystrokes were detected, ORO goes to "0" and then OR1

is set to "1", and step #3 is repeated again to check for keys

depressed in the second row.

5) The whole process repeats until all 4 rows have been scanned.

The output register (see Fig. 9-4) also contains two additional

bits, OR11 and OR12, which connect directly to the piezo-electric

211

Control The World with HP-IL

buzzer. If the CPU alternately outputs a "1" and then a "0" to
either of these lines, a loud or a soft beep will be heard. (OR12 has a

lesser resistor connected to it, resulting in a louder tone).

Keybd Row 1

Keybd Row 2

Beepef— fieyzg Eow i

Beeper = Loud ey ow

1 |

11 10 9 8 7 6 5 4 3 2 1 0

Figure 9-4

The OUT Register

As you can see, writing a Morse code keying program means

you must have access to the dedicated input and output registers of

the CPU; something not offered by the powerful BASIC and

FORTH environments. This necessitates programming in

assembly language, which is OK since we also could use the

inherent increase in speed.

The algorithm used for the Morse code keyer is a little different

from the way the keyboard is scanned. It goes something like this:

the program constantly searches for a key being pressed (input
register is not =0) and if it is it sets one of the beeper lines high,

waits a finite period, sets the beeper line low, waits the same finite

period, and goes back to see if the key is still being pressed. The

duration of the finite period determines the frequency of the square

wave generated.

The difficult part of this program was getting it to exit when the
ATTN key was pressed. The method is very simple, but finding it

took awhile. The ATTN key, when pressed, generates a hardware
interrupt which will IMMEDIATELY jump to an interrupt

routine at absolute address Hex 0000F. This routine does different

things depending on certain conditions, but in this case it just sets

the 12th bit in the status register and returns to the program that

212

An Electronic Tape Measure

was originally running. My program simply checks to see if this

bit is set every so often, and if it is jumps to the ENDBIN exit

routine.

The program listing for the Morse code BINary file appears

below:

1: BIN 'MORSE
Line 1 identifies this as a BINary program

and states the name by which it shall be

called: MORSE.
2: CHAIN-1

Line 2, CHAIN -1, lists the number of

subroutines called by this program

(which is zero, but the assembler wants to

see -1).

3:ENDBIN EQU #0764B
Line 3 is a label which equates the word

ENDBIN with the absolute operating

system address of Hex 0764B. This is the

address of a routine through which all

BIN programs should exit.

4: ST=0#C
Line 4 sets the 12th bit in the status register

to zero. When the ATTN key is eventually

hit, the operating system will set it to 1.

& LCHEX 0000F

6: OUT=C
Lines 5&6 perform two functions. LCHEX

0000F loads the nibble F into the C register

and clears all remaining nibbles in

the C register's A (address) field. OUT=C

takes the F and puts it into the output

register, driving all the keyboard scanning

outputs high. The program will then

respond to ANY key being hit.

7: INTOFF
Line 7, INTOFF, disables the interrupt

routine usually jumped to when any key

(except ATTN) is pressed.

213

Control The World with HP-IL

8:LOOP3 C=IN
9: ?C#0 A

10: GOYES START

11: ?ST=1#C

12: GOYES EXIT

13: GOTO LOOP3

Lines 8, 9, & 10 read the input register and
if it's not zero, then a key has been pressed
and will jump to the label START.

Lines 11-12: If not, it then checks the 12th

bit of the status register and if it's =1, then

ATTN has been pressed and it should jump
to EXIT.

Line 13: If not, go back to LOOP3 and check
for everything again.

14:START LCHEX F00
15: OUT=C

16: LCHEXO015
17:LOOP1 C=C-1 X
18: ?C#0X
19: GOYES LOOP1

20: LCHEXO1F

21: OUT=C

22: LCHEXO015
23:LOOP2 C=C-1 X
24: ?C#0X

25: GOYES LOOP2

214

Lines 14 & 15: LCHEX F00 and OUT=C set

bits 11 and 12 of the OUTput register

(beeper = LOUD) to 1. It also turns bits 8
and 9 on so we can watch this On-Off

action on an Oscilloscope.

Lines 16-19 form a delay loop =Hex 15.
Modifying this constant and the one in Line

22 determines the beep frequency.

Lines 20 & 21 turn the piezoelectric beeper

off and turn the keyboard scanning lines on

again.

Lines 22-25 form another delay loop to

produce a perfect square wave.

An Electronic Tape Measure

26: GOTO LOOP3
Go back to LOOP3 and start scanning the

keys again.
27:EXIT INTON
28: GOVLNG ENDBIN

Lines 27 & 28 form the EXIT routine. It

re-enables keyboard interrupts and jumps

to the program that returns the user to the

BASIC operating system.
29: END

End.

How to Enter Assembly Language Files

Like most assemblers, the FORTH/Assembler ROM expects to

see the above program (without the comments on the right) in a

text file, which can be created using the EDTEXT program

contained in the same ROM. Just type in

EDTEXT (filename) <ENDLINE>

and when the 71 comes back with the 'Eof, Cmd:' prompt, just type

T <ENDLINE>

and start entering the code, one line at a time. WATCH FOR THE

LEADING THREE SPACES ON EACH LINE!!! The assembler

treats anything within the first three spaces as a label rather than

an instruction. Also, you don't need to type in the line numbers;

the text editor will put them in for you. When you are finished, hit

the ATTN key, and at the Cmd: prompt, type 'E' (for Exit) and this

returns control to the 71 you know and love.

When you go into the FORTH environment and type

215

Control The World with HP-IL

" (textfile name)" ASSEMBLE <ENDLINE>

the assembler converts your text file to machine code. If the
assembler detects an error in your code, it will quietly display an
error message with no beeps. Watch it carefully!

After going into FORTH and assembling the program, all you
have to do is type BYE (which returns you to BASIC), type "RUN
MORSE" <ENDLINE> and you're in business.

Other notes while we're on the subject of producing assembly
language files:

Be sure the name of your text file is not the same as the
assembly language file it will be producing! (i.e., make sure the

name following 'BIN' is unique!) This is necessary because,
unlike many other computers, the 71 doesn't support different file
types with identical names. If the file you want to access is first in

the filechain, great! All others after that with identical filenames

cannot be accessed.

It is highly recommended that a backup of your latest program

version be kept in independent RAM, so the inevitable MEMORY
LOSTs won't set you back too much timewise. I've defined a few
words in the FORTH environment to make this task automatic:

: REPLACE " PURGE MORSET:PORT(2) @ COPY MORSET TO

:PORT (2)" BASICX ;

: ASS REPLACE " MORSET" ASSEMBLE " BEEP" BASICX BYE ;

All T have to do now is go into FORTH mode and type ASS (that's

short for ASSemble, gang!) and it automatically generates a

backup copy of MORSET (the "T" suffix distinguishes it as a Text

file) in PORT(2) of independent RAM, assembles it, BEEPs when

completed and returns me to BASIC.
I know what you're thinking: "Gee, this program sure was fun

to produce and play with, but what does this have to do with

interfacing to the outside world?". Well,it just so happens that the

IN and OUT registers, with which we have just now become

216

An Electronic Tape Measure

intimately familiar, have extra bits that directly control CPU pins

that aren't used for anything, and can be turned on and off using

the OUT=C command!

Referring back to Fig. 9-3 (the OUT register map), we see bits 5

through 9 unused. Furthermore, just as all the other bits (which

control the keyboard rows and the beeper) are accessible at the

CPU pins, so too are these unused bits, just waiting to be

harnessed! There are, unfortunately, no extra pins leading to the

INPUT register for similar applications, but we do have one that

can do double duty: IR14, the input usually used for peripherals

(ROMs, RAMs, card reader, etc.) to generate an interrupt and

grab the CPU's attention. Before we can use any ofthese, though,

we must first find some way of bringing these signals to the 71's

surface.

Hardware Modification

I decided to make this modification as versatile as possible by

opening up the 71 and bringing a total of six signals to a

6-conductor modular telephone connector. The six signals are:

OR7, OR8, OR9
IR14
5V, GND

The fun part, of course, is opening up the 71 and soldering wires to

strategic points on its circuit board. Currently, there exist two

versions of the 71; the later of the two being much easier to

disassemble than the earlier. Visual inspection of the 71's exterior

will reveal which version you have: the earlier one has three tiny

brass screw heads showing on the bottom plate; the later one

doesn't. The earlier one has all the springs in the battery

compartment lined up on one side; the later one doesn't. The

earlier one contains a ribbon cable inside that joins the top and

bottom halves and therefore requires a little more caution than the

newer version. Procedures for both are provided next.

217

Control The World with HP-IL

The Easy Part

The first part of the

modification is relatively

risk-free. First, get a small,

6-conductor modular phone
jack. (Not all are small enough
to fit neatly, so scavenge

carefully.) To this, attach six

strands of insulated wire (the
kind used for wire wrapping
works nicely), about 8-10 inches

in length. Next, we go to work

personalizing the 71.

Every 71 comes with a

"dummy" block to fill in the space that the card reader normally
occupies. If you remove this block and carefully pry off the

decorative metal strip, you can then take a miniature grinding tool
(or a drill with a tiny drill bit) and carefully cut out a square hole.
It is best to do this slowly, and periodically check the hole's size
against the jack to be installed. It is also necessary to remove the

structural rib from inside the block, so the jack can be pushed in

from the bottom and glued there.

How to Disassemble the 71

It is clear by the machine's construction that HP didn't want

anyone to open the 71. (We'll show them!) Getting into it isn't such
a difficult thing once you know how, but there are some basic

precautions: 1) make sure the warranty has expired (some of you

more daring folk may choose to ignore this; I know I did). 2) This

is one case where I definitely recommend soldering and

mechanical experience before attempting this feat! (If you lack

such experience, you may wish to consult Appendix B for firms

that will perform this modification for you.)

The next step is to take the 71 apart and solder the 6 wires from

the modular jack to strategic places on the circuit board. Essential

218

An Electronic Tape Measure

tools needed are 1) a small jeweler's flathead screwdriver, and 2) a

#6 TORX wrench. WARNING: Do not attempt this disassembly if

the proper tools (specifically the TORX wrench, which is probably

difficult to obtain (even from HP, which sells it as part number

8710-1424)) are not available. These special screws damage easily

if not handled by the correct instrument. (Appendix B also

contains sources of difficult-to-find items.)

o1d7

If you own the "old" style 71, disassemble it via the following

procedure:

1) Flip the 71 over so its bottom is up and the four ports are

facing you. Remove the rear card reader cover, the battery cover,

and the batteries.

92) With the flathead screwdriver, carefully peel off the three

remaining rubber feet. Fig. 9-6 shows the five visible TORX

screws, one in each corner and one along the top center.

123456 Color Signal
e White oRg

2 Black OR9

3 Red +5v

4 Green GND

5 Yellow IR14

6 Blue OR7

WARNING!!

Depending on the modular cable's

construction, the receiving jack's pinout

Figure 9-5 may or may not be the reverse (i.e,

MOdUkJrJOCk mirror image) of that shown above.

Pinout. Examine the cable carefully!

219

Control The World with HP-IL

*
Figure 9-6. The 71's back just before opening. Knowing which
brass screws to remove is the key.

Loosen only

these two!

"Yye|q-e|q Ye|q ye|g

The 71's bottom

Figure 9-7
Disassembling
the old 71.

220

An Electronic Tape Measure

3) Carefully unscrew all five TORX screws. DO NOT ATTEMPT

TO DO THIS IF YOU DON'T HAVE THE PROPER TOOL!

4) Notice the three remaining tiny brass screws on the surface

facing you. Using the flathead jeweler's screwdriver, loosen

ONLY the two which are clumped together. See Fig. 9-7.

5) Now comes the crucial part of separating the top and bottom

half. AS YOU DO THIS STEP, BE VERY CAREFUL NOT TO

BEND, TWIST, OR OTHERWISE CRACK THE RIBBON CABLE

CONNECTING THE TWO HALVES TOGETHER. As you attempt

to lift the bottom half away from the remainder of the computer,

you will notice that the "northern" part, which normally

accommodates the batteries, IL Module, and card reader, lifts off

easily; while the edge containing the four plug-in modules seems

hesitant to move. This is normal. Just hold the 71 vertically so the

"ON" key is closest to the ceiling, and gently pull the two halves

apart from the top. The only resistance you are likely to encounter

will be a plastic "catch" placed in the center of the 71's four ports;

"twisting" the almost-separated halves somewhat while pulling

will usually free them. Be careful when separating the two halves

and laying them down flat, for the ribbon cable connecting the two

halves is very fragile. When done, the new unit should be laid

down like a book, with the keyboard half on the right and the

bottom half on the left.

Openthe 71 this way,with the
ON key pointing up. The old
version has a fragile ribbon

cable at the bottom, which
should be treated as a hinge. 221

Control The World with HP-IL

6) On the right halfis a large sheet of copper, used to shield the

unit from electromagnetic interference. It can easily be peeled off

from the ICs it is attached to. Doing so reveals three adjacent

ROMS and a somewhat distanced CPU.

7) Sit and stare at the incredible job HP did squeezing such a

powerful computer into a tiny space.

8) We are now going to solder the six wires from the modular

jack to the 71's guts. Pins #3 and 4, which supply +5v and Gnd

respectively, connect to the 470 microfarad capacitor right next to

the 71's AC adapter input. (Fig. 9-8) Pin 3 gets connected to the

side of the capacitor labeled as "+".

9) Now attach pins 1,2,5, and 6 of the modular jack to the right

side (top half). Figure 9-9 shows a subset of all the plated-through

holes surrounding the one isolated 1LF2 integrated circuit that we

must access. The pinout is as follows:

OR7 CPU Pin 8

ORS8 CPUPin9

OR9 CPU Pin10

IR14 CPU Pin 51

Figure 9-8. +5v and Ground are easily tapped on the 71's power

supply capacitor leads.

222

An Electronic Tape Measure

LUSTe

[
T

a4

LLaiernreenn LLirareenannrnnnl JATERNENIRRONINEE

3 E 3 E 3 E3 E] E 3 E

TITTTTTITTITTITTTTT TTITTTTITTTTT T TITTTTTTITTITITTNT

IR14 —

preprepnfipianey

\Figure 9-9 }

OR7 OR8 OR9

1
1
1
1

L
A
R
A
R

 CPU Board
Solder Points.
(Old Version)

223

Control The World with HP-IL

Be careful when soldering wires to these plated-through holes;
excessive heat may damage the IC, and excessive solder may

bridge connections elsewhere on the circuit board.

10) Push the block (now with wires attached) through the hole in
the left (lower) half of the 71, and close the machine. Pull the wires

out as far as you can while closing, but be careful that the wires
don't get caught in places that prevent the case from closing fully

or between the card reader's contact pins.
11) Before replacing the screws, replace the batteries and confirm

that the 71 will turn on. (You should expect a MEMORY LOST,
since there's no memory retention when changing batteries.) Also

do a soft and a loud BEEP to insure the piezo- electric buzzer isn't
being disturbed.

12) Replace the five TORX screws, the two small brass screws,

and the three rubber feet.

13) Marvel at your impressive-looking modification, and prepare

to respond to billions of stupid comments like "Wow! You have a

modem? What speed is it?".

New 71

If you have the "new" 71 (without the brass screws on the

bottom), disassemble it using the following instructions:

1) Flip the 71 over so its bottom is up and the four ports are facing

you. Remove the rear card reader cover, the battery cover, and the
batteries.

2) With the flathead screwdriver, carefully peel off the three

remaining rubber feet. There are seven visible TORX screws, one

in each corner, one along the top center, and two in one of the

battery slots.

3) Carefully unscrew all seven TORX screws. DO NOT

ATTEMPT TO DO THIS IF YOU DON'T HAVE THE PROPER
TOOL!

4) Now comes the crucial part of separating the top and bottom

half. Just hold the 71 vertically so the "ON" key is closest to the

224

An Electronic Tape Measure

ceiling, and gently pull the two halves apart from the top. The two

halves separate quite easily and there are no internal wires

connecting them.

5) Sit and stare at the incredible job HP did squeezing such a

powerful computer into a tiny space.

6) We are now going to solder the six wires from the modular

jack to the 71's guts. Pins #3 and 4, which supply +5v and Ground

respectively, connect to the 470 microfarad capacitor right next to

the 71's AC adapter input. (Refer to Fig. 9-8 from page 222). Pin 3

gets connected to the side of the capacitor labeled as "+".

7) Now to hook up pins 1,2,5, and 6 of the modular jack to the

right side (top half). Figure 9-10 shows a subset of all the

plated-through holes surrounding the one isolated 1LF2 integrated

circuit. The pinout is as follows:

OR7 Pin 8
ORS8 Pin 9

OR9 Pin 10 o

IR14 Pin5l ' g

ARl prpraeraarenlg LLptrerrrinranty

1
1
1
l

T
T
T
T
T

T
l

1
1
l T
T

11
1

TTITTTTITTTT T TITTITTITITTITTTTT TUTITTTTITTTT

IR14 —»

eIIIIIJ

TTTTTTITTTTT

Figure 9-10 \
CPU Board o 44— OR9
Solder Poinfts. °, <— OR8

(New Version) &

OR7

T
T
T
T

225

Control The World with HP-IL

Be careful when soldering wires to these plated-through holes;
excessive heat may damage the IC, and excessive solder may
bridge connections elsewhere on the circuit board.

8) Push the block (now with wires attached) through the hole in

the left (lower) half of the 71, and close the machine. Pull the wires

out as far as you can while closing, but be careful that the wires
don't get caught in places that prevent the case from closing fully
or between the card reader's contact pins.

9) Before complete re-assembly, we should check the 71's health.
Put the two halves together and replace only the two adjacent
TORX screws in the 4th battery chamber. Upon replacing the
batteries, confirm that the 71 will turn on. (You should expect a

MEMORY LOST, since there's no memory retention when

changing batteries.) Also do a soft and a loud BEEP to insure the
piezo- electric buzzer isn't being disturbed.

10) Replace the remaining five TORX screws and the three
rubber feet.

11) Marvel at your impressive-looking modification, and prepare

to respond to billions of stupid comments like "Wow! You have a

modem? What speed is it?".

Connecting the Transducer

Fig. 9-11 shows how we can use the new 71 I/O lines to connect

to the transducer. Here only four of the six lines are used, and the

71's batteries also power the external circuitry. (I'm always

impressed by what those tiny AAA's can do!) If your module

doesn't work on the first try, you may need to attach an additional

3.9K Ohm pull-up resistor onto the output, which can conveniently

be soldered between module pins 1 and 2.

Next, we need some software to drive it. The following is an

assembly language program called a FORTH primitive, and it

functions very similarly to the Morse Code program presented a

few pages back. Unlike LEX or BIN files, which add new words to

the BASIC environment, this primitive adds a new word, called

"MEASURE", to the FORTH environment:

226

An Electronic Tape Measure

Transducer

Figure 9-11
How the Ultrasonic
Ranging Module is
Attached.

1: FORTH

2: WORD 'MEASURE'

3: INTOFF

4: A=0 A

5: LCHEX 20F

6: ouT=C

7: Cc=0 A

8:WAIT A=IN

9: C=C+1 A

10: GOC EXIT

11: ?A=0 A

12: GOYES WAIT

To

Modular

—a

Ranging Module

Module 71

Pin # Connections

Note: A 3.9KQ resistor

may be needed between
pins 1 and 2 for proper

operation.

Identifies this as a FORTH

word.

Name of the function.

Disable interrupts normally

generated when IR14 is brought

high.

Set the Address field of the A

reg. =0.

Turn OR9 on. (Keyboard is

activated, too. See text.)

Read the inputs. Only IR14

will be recognized.

C keeps track of how long we've

waited.

Provide a timeout in case we

measure the sky.

Has IR14 not come back?

Yes, go back to line 8 and do

it again.

227

Connector

Control The World with HP-IL

13:EXIT D1=D1- 5 Otherwise, we received an echo.
14: DAT1=C A Take the value in C and push it

onto the FORTH stack.
15: C=0 A Bring the INIT line low again.
16: OuT=C

17: RTNCC Return with Carry Clear, the

proper way to return to FORTH.

This program, being a FORTH word, must be run in the FORTH
environment. After assembling, just type

MEASURE . <ENDLINE>

which tells it to run the program MEASURE and to display the
first number on the the stack (the "." command). The display will
show something like

163 OK { 0 }

The number on the left shows the number of times the C register

got incremented while waiting for an echo to return, and the
number between the brackets on the right shows how many
numbers are on the stack. We must now calibrate these readings
if the result on the left is to be meaningful.

Calibration is a simple process. Place the transducer at several

fixed, known distances from a flat wall and record the number

returned by MEASURE. Plotting these on graph paper should

yield the straightest of lines, and the slope of the line determines
the number you multiply the result by to get the distance in inches.
My own measurements yielded this equation:

inches = (result from MEASURE)x 0.370

I also discovered during this time that you should NOT plug an AC

228

An Electronic Tape Measure

adapter into the 71 during transducer operation. The noise from

this badly filtered source is so great that the driving module gets

confused and won't recognize echoes that travel further than 10

feet. The following program, written in BASIC, does the proper

conversion:

5 ! Program TAPEM (Tape Measure) works with the

Polaroid Transducer.

6 | It takes the results from the FORTH environment

7 ' and displays them in feet and inches.

10 FORTHX " MEASURE"

20 N=FORTHI

30 N=N*.37

40 F=INT(N/12)

50 I=MOD(N,12)

60 IF F=0 THEN DISP USING 70;I ELSE DISP USING 80;F,I

70 IMAGE 2D.D," Inches"

80 IMAGE 4D," Ft. ",2D.D," Inches"

eb FT. B.7 Inches

229

Control The World with HP-IL

This program automatically goes into the FORTH environment
and executes MEASURE (line 10), multiplies the result by the
experimentally obtained slope, and formats the output to read in
feet and inches. Standing in a corner, you could use the above
program to measure the volume of a room by taking only 3
readings!

An extra measure of protection (no pun intended) is provided in
line 5 of the FORTH primitive. In the event that you try to measure
the distance of anything greater than 30 feet away (such as the
ionosphere), no echo will be received and the program will just sit
there forever counting and waiting. Because the keyboard's
ORO0-OR3 bits were also turned on in line 5, a returning echo OR
ANY KEYSTROKE will terminate the loop and provide a reading.
This makes for easy recovery from bad aiming; if the program
hangs because it didn't receive an echo, just press any button on
the keyboard and the program terminates instantly.

Personal Space Invasion Alarm for Valley Girls

Another great application combines both high-fashion and

security, and would probably sell a million if it were on the market.
The Personal Space Invasion Alarm audibly warns passers-by that

the user's space is being invaded, and is a must for Valley girls
who travel abroad.

230

An Electronic Tape Measure

In practice, the transducer is worn around the neck as a piece

of fashionable jewelry, while the relatively ugly driver components

are hidden in the purse along with the 71. The 71 has been

programmed to periodically fire the transducer, and will beep

continuously as soon as anything comes within 1 1/2 feet of the

user.

This application requires 2 additional lines to the TAPEM

program above:

25 IF N < 50 THEN BEEP @ GOTO 10

65 GOTO 10

It is unfortunate that any modification must be made at all in

order to harness an otherwise untapped potential of the 71, for its

small size makes it the only practical option for portable

measurement devices. I have found, however, that it is a most

worthwhile change and does nothing but increase the

performance of an already powerful machine.

The fashionable Personal Space

Invasion Alar m consistsof the

transducer which is worn around the

neck, and the ugly guts which are

hidden in the purse. 231

Control The World with HP-IL

232

Chapter Ten

A SLIDE PROJECTOR DISSOLVE

UNIT

While we're at it, why don't we write a 71 program that decreases

entropy?!
-Richard Nelson

Chapter 9 described a modification to the 71 that allowed direct
access to some CPU pins. This chapter shows a very different use

for this modification. Here the 71 becomes the center of a large

audio/visual system, taking its cues from audio tape and

controlling the intensities of 2 projector lamps.

A slide projector dissolve unit is designed to make slide shows a

more artistic and pleasant experience. Rather than the harsh

bright-black-bright that usually accompanies such shows, this

system uses 2 projectors and slowly fades one image out while the

next image slowly fades on, and the transition looks as if one

image dissolves into the other. Of course, the dissolve intervals

and duration are all user-controlled.

Designing this system required the merging of several

disciplines, including assembly language, FORTH, Touch Tone

signaling, pulse width modulation, and zero-crossing detectors.

Allbutthe last two items have been discussed in previous

chapters, which means only one or two new techniques must be

introduced in order to accomplish something vastly different.

How Light Dimmers Work

Contrary to popular belief, lights do not have to be dimmed by

putting them in series with a potentiometer or rheostat so as to

233

Control The World with HP-IL

reduce the voltage driving them. Another method best used by
computers actually fools the eye and keeps it on only half the time.
For example:

On

Off

January June January

Figure 10-1
Low Resolution
Light Dimming.

The diagram in Fig. 10-1 will keep a light bulb going 50% of the
time. Its obvious drawback is its 6 month period, which certainly
will not fool the human eye into thinking it's on continuously.

Let's do it again, only this time we'll use a faster time scale:

On

Off

0 1/75 2/75 1/25 4/75 Figure 10-2
A Trivial
Improvement.

Same duty cycle (50%), but this time it's so fast that the light
appears to be continuously dim when it's actually turning on and

off very quickly. If you're dimming with this method, any

brightness from 0 to 100% can be attained by varying the duty cycle

(ratio of ontime/offtime).

Controlling an alternating current (AC) lamp is a bit more

complicated. (No pun intended.) For example, let's take the

previous timing diagram and apply it to an incandescent bulb, as

shown in Figure 10-3.

When you try to dim an AC lamp by varying its pulse width,

there's a good chance you'll develop what's known as an

interference pattern, as shown in Fig. 10-3C. Interference

patterns occur due to the computer not being synchronized with

234

Slide Projector Dissolve Unit

What's being sent to the bulb

(Pretend it's a Sine wave)
.

' '
\ '
\ .
\

|

\ '

On-Off pattern

Figure 10-3

What the bulb sees (=A&B) Interference

Patterns with

(=GARBAGE!) the AC Line.

the AC lines, and make the bulb's output look like there's an

intermittent break in the AC cord, rather than the constant

illumination we're so used to seeing.

The Zero Crossing Detector

The way around thisis to synchronize the two waveforms with a

zero-crossing detector (ZCD), whose function is illustrated in Fig.

10-4 (next page).

Every time the AC signal crosses zero volts, the ZCD outputs a

short pulse to the computer generating the control on/off signals.

And if the computer was smart, it would use the pulses as in

Figure 10-5:

235

Control The World with HP-IL

(N [
U U U

o ||
Figure 10-4
The Output of a
Zero Crossing

Detector.

Turn lamp
off

Y

Wait
awhile

Y

Turn lamp
on

Figure 10-5
What We Must

Do Within 1/120
of a Second.

236

Slide Projector Dissolve Unit

and your output would look like Fig. 10-6:

DN N N

< .

Figure 10-6
Clean Output.

The amount of time you wait, of course, determines the intensity

of the lamp. If you don't wait at all the brightness is 100%; if you

wait for more than 1/120 of a second, it behaves more like a lantern

than a lamp. Our purpose, of course, is to wait at a continuously

variable rate between 0 and 100%.

The circuitry shown on the next page not only provides the ZCD

pulses to the computer, but also acts as a power supply for both the

circuitry and the 71. (See Fig. 10-7.)

237

Control The World with HP-IL

 3 < > o I

3.3KQ

4

¥ —,

TO 71

2
1

5V 3 +5V
REGULATOR

Figure 10-7
A Walkthrough
of the Zero
Crossing Detector.

First, start with HP's standard, hot-running 8v AC

transformer (1). Feed this into the bridge rectifier which turns the

AC into pulsating DC (2). (Notice the load resistor across the bridge

rectifier!) The low power Op Amp which follows is configured for

a gain of 1. Here we make use of the fact that an Op Amp's output

voltage can only be a little less than its power supply, so that with

an input waveform of 8V (2), only the 0-5V portion gets

reproduced correctly and the rest gets "clipped” (3). This now
makes the signal correct for the inverter, which converts (3) into

(4), and we have our end product: a signal to tell the 71 when the

AC power crosses zero volts.

238

Slide Projector Dissolve Unit

The remainder of the circuitry near the bottom, which includes
the diodes, the capacitor, and the 5V regulator, form the power

supply which is enough to power all the circuitry as well as the 71.

How to harnessit

Here we make use of the two extra wires installed in the last

chapter but never used. We need to access output lines OR7, ORS,

OR9, and Input line IR14. We also use the +5v and Gnd wires to

feed power to the 71, just to insure that your AAA batteries don't

die during a presentation.

Control Signal
from OR7

2
3

l—l l—l I"‘ Pulses from IR14

ZCD. 1

Figure 10-8
Protecting IR14
From Constant
ZCD Pulses.

Fig. 10-8 shows how one of these wires are hooked up. Since

IR14 is used for all system interrupts (including the ATTN key),

we must be very careful to send it signals ONLY DURING THE

ASSEMBLY LANGUAGE ROUTINES, otherwise the 71 will be

interrupted 120 times a second and will be bogged down with

having to handle them.

OR7 is used with the AND gate to solve this problem and block

out these ZCD inputs when they're not needed. When the assembly

language portion of the program is ready to accept the ZCD as

input, it simply sets OR7 high which "turns the AND gate on" and

allows its other input to appear at its output, letting the pulses

through the gate to reach IR14. Setting OR7 to "0" when it is

through shuts off the pulse train. This way, the 71 can be used

239

Control The World with HP-IL

when it isn't dimming lights.
OR's 8 and 9, which are used to directly control each projector

lamp, are hooked up as shown in Fig 10-9 below. Because we don't

wish to overload the fragile CPU's final driver transistors, an AND

gate whose inputs are tied together is used as a buffer to drive the

3010 Opto Isolator/Triac Driver IC. This in turn controls the high

voltage of a triac, which in turn connects in series with a light bulb
and controls its states.

oR8 6 100 Q 1

PROJECTOR 1

5 LAMP CONTROL

| RECEPTICLE

MOC
3010

PROJECTOR 2

LAMP CONTROL

RECEPTICLE

Figure 10-9
How Output Register
Bits 8 and 9 Directly
Control Lamps.

Sample Program

Just to show how all this is supposed to work together, let's look

at a "very simple" (I suppose everything's relative) assembly

language program that takes only one light bulb and fades it from

off to on in about 10 seconds.
This program is a FORTH primitive; a new word added to the

FORTH dictionary written in assembly language rather than

other FORTH words. It works like the flowchart of Fig. 10-5, but

alters the "wait awhile” variable so the intensity gradually

changes. The total time to fade from off to on is controlled by the
stack input which can range from 1-15:1 will fade slowly; 15, the

240

Slide Projector Dissolve Unit

highest you can go with Touch Tone input, will fade so quickly as

to look instantaneous. (Refer to Fig. 10-10 for OUT register map

and Fig. 10-11 for register usage.)

Enable Zero Crossings
— Keybd Row 1

Lamp #1 Keybd Row 2

Lamp #2 Keybd Row 3

Beeper Keybd Row 4

Beeper = Loud l‘ I

1

11 10 9 6 5 4 3 2 1 0

Figure 10-10

The OUT Register.

FORTH x*%x FADES AN AC LIGHT FROM OFF TO ON ***

WORD 'FADEON' (DISSOLVE SPEED --)

INTOFF Ignore pulses from IR14.

SETHEX

LCHEX 00120

RO=C Store wait time in RO.

A=DAT1 A Pop dissolve speed

D1=D1+ 5 off stack.

R1=A Store dissolve speed into R1.

LCHEX 00080

ouT=C

LCHEX 00004

D=C A

GONC LOOP1

Clear outputs and set OR7 high

to enable ZCD input thru the

AND gate.

Constant in D is used to

uniformly extend the dissolve

time.

Load wait time into A.

Load dissolve speed into C.

Don't go on to change

parameters unless D=0.

241

Control The World with HP-IL

A=A-C A Decrement wait time.

GOC EXIT Exit if at full brightness.

LCHEX 00004

D=C A Reset D counter.

RO=A Store new wait time in RO.

LOOP1

C=IN *

2C=0 A * Wait for zero crossing.

GOYES LOOP1 *
Cc=0 A

ouT=C Shut off bulb.

LCHEX 380 Load bit mask to turn either

lamp on and re-enable ZCD

inputs.

LOOP2

A=A-1 A Delay for pre-determined

GONC LOOP2 amount of time.

OouUT=C Turn lamp on.

GOTO SETUP That was 1/120 of a second; go

EXIT back and do the whole thing

RTNCC again.

END

Temp. storage of
—> WAIT TIME A WAIT TIME RO

DISSOLVE SPEED

A=A-C B (from stack) R1

SPEED C R2

RATE MULTIPLIER D R3

Figure 10-11 R4
The 71's CPU
Registers.

242

Slide Projector Dissolve Unit

IL Interface

Despite all the hardware modifications for I/O mentioned above,

an 8-bit port is still needed for two important functions in this
system: Touch Tone signal decoding, and slide projector advance.

(The hardware for both functions have been covered in previous

chapters.) Briefly, sending a "1" or a "2" to the converter and a "0"

immediately afterward will cause the circuitry in Fig. 10-12 to

"press a button" and advance either projector 1 or projector 2. The

Touch Tone (which, by the way,is still a registered trademark of

AT+T) decoder IC as shown in Fig. 10-13 is used to tell the 71 not

only when to dissolve to the next picture, but also how quickly.

+5v ?

20 YELLOW
. 5 100Q4 6

DAO §

Ay ——

3

2 2 } PROJECTOR 1
74G373 . ADVANCE

LATCH 1

RED

100Q4 6 YELLOW

11 10 11 f -

>

DAVO LE 2 } PROJECTOR 2
J__ ADVANCE
e

1 l [to RED

RDYI

_bac| Figure 10-12
CGN\D | Automatic Slide

Projector Advance.

Because I wanted the flexibility to have complete control over the

timing parameters and have the system automated as well, a

scheme was devised where the 71 could either get its input "live”

via an external keypad, or taped so the presentation could forever

be synchronized with music. Once again Touch Tone Technology

(or "T-cubed" for short) is employed to meet all the requirements.

243

Control The World with HP-IL

‘
A
l
y
n
o
u
D

B
u
l
o
u
d
i
g

8
u
o
|
y
o
n
o
|

£1-0L
@inbiy

I
A
Q
H

1
0
v
a

H
A
A
H
O
O
R

1va
3
I
d
V
1
N
O
H
4
/
O
L

9
v
a

1
N
O

3INIT/NI
A
N

e
v
a

y
v
a

Jojesausn
w
y
o
b
a
|

ouoL
ZHW

6.S'E
yonoy S

t
i

L
S
6
-
W

a
u
o
j
j
e
]

I
A
V
a

 8
L

6

£
v
a

0
2

2
v
a

Jsepoosqg
|42

v
a

a
u
o

o
n
o

®
1
y
o
n
o
|

o
v
a

244

Slide Projector Dissolve Unit

Fig. 10-13 shows a familiar pairing: the M-957 Touch Tone

decoder chip on the left, and a Touch Tone generator

(manufactured by Texas Instruments; just trying to be different)

on the right. The decoder chip, which is attached to Data Bus A

the same way it was in Chapters 6 and 7, is the sole source of input

to the 71. This chip's input, however, can come from one of two

sources: the generator chip on the right (with its accompanying

keypad), or from the LEFT CHANNEL-LINE OUT output from a

stereo tape recorder. (The right channel, of course, contains

music or narration or whatever.)

Because of a severe impedance mis-match between the audio

LINE IN/LINE OUT feed and the Touch Tone Generator chip, we

must also add a simple-looking circuit called an impedance-

matching network. The network is used to generate or receive

signals from either of two sources: 1) Using line in/line out VU

levels from standard low-impedance audio equipment and 2)

the-ultra-high impedance Touch Tone generator chip, allowing

both signal sources to co-exist without the low impedance source

"sucking up" the signal from the high impedance one. In

addition, this network must correctly attenuate the generator

chip's output so a signal traveling to LINE IN will be at standard

VU levels for optimum signal recording.

The solution appears in Fig. 10-13 in the form of the 10K, 47K, &

4.7K resistors and an op amp. The op amp is 1/2 of the 449 dual op

amp, whose other half we used while constructing the

zero-crossing detector.

Connections to the slide projector can be a bit tricky. Although

rumor has it that you can call Kodak and ask them for a 7-pin

connector with cable, I found that I could get it done faster by

merging a spare remote control cable and one of those universal

car stereo power connectors, available at your local electronics

outlet (See Fig. 10-14).

All in all, the circuitry is shown complete in Fig. 10-15.

The Software

The Driver program, written in FORTH, is shown on the next

page.

245

Control The World with HP-IL

O O Short these two

together momentarily

O to advance the projector.

O O
Short these two

together and the lamp

O O turns on.

LTI

Figure 10-14
Kodak's slide
projector connector.

VARIABLE IO

ADVANCE DUP 1+ IO ! IO 1 OUTPUT 100 O DO LOOP 0O IO !

IO 1 OUTPUT ;

BASE HEX

SLIDES " CLEARLOOP@STANDBY ON" BASICX "

DEVADDR ('GPIO') " BASICI PRIMARY !

0 IO ! IO 1 OUTPUT

0 IO 1 ENTER DROP @ FADEON

BEGIN IO 1 ENTER DROP @

DUP C = IF DROP IO 1 ENTER DROP @ FADEOFF "

CLEARLOOP" BASICX -1 ABORT" Enjoy the show? "

ELSE DUP B = IF DROP FLASH

ELSE DUP O = IF DROP DROP

ELSE DISSOLVE 100 0 DO LOOP ADVANCE THEN THEN

0 UNTIL ;

Basically, (or in this case FORTH]ly), it uses the ENTER command

to wait for a Touch Tone input from either the keypad or an audio

track. Ifit's =0 it's discarded to avoid an infinite loop; if it's =B (the

* key was hit) it executes the FLASH primitive which just switches
projectors without changing anything else. If it's =C (the # has

been hit), this means that the next signal will be the last slide and

therefore should only fade the current bulb off. If none of these

246

247

TI
44
98

LO
W
PO
WE
R

o
7

OP
-A
MP

11
0V

A
C

T
O
7
1

P
R
O
J
E
C
T
O
R

1
L
A
M
P
C
O
N
T
R
O
L

P
R
O
J
E
C
T
O
R
2

L
A
M
P
C
O
N
T
R
O
L

—
v
E
L
O
W

P
R
O
J
E
C
T
O
R

1

AD
VA

NC
E >

f
D

7
4
C
3
7
3

L
A
T
C
H

10
00
y
—
—
6

1
W

>
D
A
o
L
0
e

f
YE
LL
OW

%
PR

OJ
EC

TO
R

2
A
D
V
A
N
C
E

4
>

T
¥

R
E
D

2

o
u
c
h
T
n
n
a
O

De
co
de
r

Te
lt
on
e

1
0

M
-
9
5
7

Tl 5
0
8
9

o
u
c
h

o
n
e

Ge
ne
ra
to
r

14

3
5
7
9
M
H
z

1
M
e
g
O
h
m

1
5

D
A
4

DA
S

LI
NE

IN
LL

IN
EO

UT
DA
S

TO
/I
FR
OM

TA
PE

DA
7

RE
CO
RD
ER

DA
CI

RD
Y!

Fi
gu
re

1
0
-
1
5

C
o
m
p
l
e
t
e
S
c
h
e
m
a
t
i
c

Slide Projector Dissolve Unit

Control The World with HP-IL

special conditions exist, then it's an ordinary dissolve, and the
primitive DISSOLVE is fed the current projector status ('0'=
projector 1 currently lit, '1' = projector 2 currently lit) and the
dissolve speed (1-15, 1 being slowest) from the stack. When
DISSOLVE returns, the new projector status is left floating on the
stack. We wait from 1 to 100 to let it breath, then ADVANCE the
proper projector.

That was the easy part. Now for the primitives.

The Primitives

There are five primitives in all, and they have all been merged
into one big text file. They function very similarly to the single-bulb
example given a few pages ago, except these must now work two
bulbs, each having a different intensity at any given moment.

To load these, EDTEXT DISS4TH and enter the listings below
into a text file. The comments need not be added, but the leading
three spaces on most lines are critical!

Next, EDTEXT DRIVER and enter the driver program listed
above. Finally, go into FORTH and enter the following command:

" DISS4TH" ASSEMBLE " DRIVER" LOADF <ENDLINE>

(watch the spaces!) which loads everything in the proper order into
your FORTHRAM file. Save the FORTHRAM file onto disk; that
way running this application in the future requires you only load
the FORTHRAM file and type SLIDES <ENDLINE>.

WORD 'FLASH' ***x SWITCHES PROJECTORS ***

C=DAT1 A (0ld Status -- New Status)
D1=D1+ 5 Pop lamp status off stack.
?C=0 A Is lamp #1 on?

GOYES OTHERI1 Branch here to handle it.
LCHEX 100 Set bits to turn lamp #1 on.
OUT=C Implement it.

R4=C Save OUT register status in

R4 .

248

Slide Projector Dissolve Unit

C=0 A

D1=D1- 5

DAT1=C A

RTNCC

OTHER1

LCHEX 200

ouT=C

R4=C

LCHEX 001

D1=D1l- 5

DAT1=C X

RTNCC
*

WORD 'DISSOLVE'

INTOFF

C=DAT1 A

D1=D1+ 5

A=DAT1 A

D1=D1+ 5

?A#0 A

GOYES OTHER

RO=C

C=-C A

R3=C

LCHEX 00095

R2=C

C=0 A

R1=C

ST=0 7

LCHEX 280

ouT=C

D=0 X

GOTO START

Push new status (=0,indicating

lamp #1 is on) onto stack.

Return carry clear.

Enable zero crossing.

Store OUT status in R4.

Set status bit to 1,

indicating lamp #2 is on.

Push this wvalue onto stack.

Return carry clear.

(Lamp Status Time -- Lamp

Status)

Pop dissolve time off stack

and into C.

Pop projector status

off the stack and into A.

Is lamp #1 on? (A<>07?).

Yes, branch to OTHER.

Store # on stack into RO.

Take the 2's complement of C

and store it in R3.

095 = wait time of lamp #2.

(0% brightness) .

Store it in R2.

0 = wait time of lamp #1.

(100% brightness) .

Store it in R1

Set status bit to show lamp #1

is now on.

(Well, it's about to be,

anyway!)

Turn on lamp #2 and enable

interrupts.

Clear wait loop.

Begin dissolve routine.

249

Control The World with HP-IL

OTHER

R3=C

C=-C A

RO=C

LCHEX 00095

R1=C

C=0 A

R2=C

ST=1 7

LCHEX 180

OUT=C

D=0 X
*

*

® 6 K]
© e K] I

 AC Signal

Lamp #1 must have been on.

Store number in R3, and the

2's complement into RO.

095 = wait time of lamp #1 (0%

brightness) .

Store it in R1.

0 = wait time of lamp #2 (100%

brightness) .

Store it into R2.

Set status bit to show lamp #2

is now on.

Turn on lamp #1 and enable

interrupts.

Delay loop index =0

SETUP REGISTERS

it

7N
it

I

R
0
i
SLIDE

PROJECTORS

HP-71 Controlled Slide Projector Dissolve Unit

250

START

D=D-1

GONC

LCHEX

CDEX

C=R1

A=RO

C=C+A

R1=C

C=R2

A=R3

C=C+A

R2=C

START1

C=0

LOOPO

C=IN

?2C=0

GOYES

LCHEX

ouT=C

R4=C

A=R1

C=R2

LOOP1

A=A-1

GOC

LOOP2

C=C-1

GOC

GOTO
*

Slide Projector Dissolve Unit

START1

004

LOOPO

00080

ON1

A

ON2

LOOP1

Decrement slowdown index.

Repeat same old values if we

haven't looped N times.

If we have, reset D register.

Load C with wait time for lamp

#1.

Load A with the constant to

add.

Add A and C, and store as new

wait time.

Load C with wait time of lamp

#2.

Load A with the constant to

add.

Add, store new lamp #2 wait

time.

Clears debris not covered by

OouT.

wait for zero crossing pulse.

Shut both lamps off, but keep

zero-crossing input enabled.

Store status in R4.

Load A with lamp #1 wait time.

Load C with lamp #2 wait time.

Decrement lamp #1 wait time.

If 0 hit, branch to turn lamp

#1 on.

Decrement lamp #2 wait time.

If 0 hit, branch to turn lamp

#2 on.

Loop again.

251

CONTINUE

?ST=0

GOYES

LCHEX

CAEX

C=R2

A=A-C

C=R3

?C>A

GOYES

GOTO

CONT2

ON1

LCHEX

CAEX

C=R1

A=A-C

C=RO

?C>A

GOYES

GOTO

CR4EX

CAEX

LCHEX

c=C!a

ouT=C

CAEX

LCHEX

?A=C

GOYES

Control The World with HP-IL

CONT2

000895

EXIT

START

00095

EXIT

START

100

380

X

CONTINUE

Is lamp #1 being turned to full

power?

If so, branch to CONT2.

Load wait time for lamp #2.

Subtract current wait time

from the maximum.

Compare with step size.

Is difference less than step

size?

Yes, exit (lamp #2 is at full

intensity) .

Otherwise, prepare for another

cycle.

Load maximum wait time

into A.

Load current wait time

and subtract.

R3= current step size.

Is difference < step size?

(lamp #1 = full intensity?)

Yes, exit.

Otherwise, prepare for another

cycle.

Recall R4 and store C away

temp. in R4.

Move C into A.

Flip lamp #1 bit to 'ON' and

implement new status.

Move new QUT contents into A

register.

What OUT would be if both

lamps were on.

Are both lamps on?

Yes, break out of loop.

Slide Projector Dissolve Unit

CAEX A

CR4EX

GOTO LOOP2

ON2

AR4EX

LCHEX 200

C=C!A A

OUT=C

CAEX A

LCHEX 380

?A=C X

GOYES CONTINUE

AR4EX

GOTO LOOP1
*

EXIT

?ST=0 7

GOYES EXIT2

LCHEX 100

ouT=C

Cc=0 A

D1=D1- 5

DAT1=C A

RTNCC

EXIT2

LCHEX 200

ouT=C

LCHEX 00001

D1=D1- 5

DAT1=C A

RTNCC

END

FORTH

WORD 'FADEOFF

INTOFF

OUT status moved back to C,

and 380 (which is < 095) into

A.

OUT into R4, previous C status

into C.

Continue counting.

A preserved in R4, OUT into A.

* Flip lamp #2 bit to 'on'.

OUT status goes to A.

Are both lamps on?

Yes, break out of loop.

OUT goes to R4, prev A goes to

A, C=380 (which is >0095!)

Is lamp #1 to be left on?

Yes, branch to EXIT2.

Turn lamp #1 on.

Push status

(which =0 = lamp #1 on)

onto the stack.

Ahhh...Gooba!

Turn lamp #2 on.

Push status bit

(which =1 = lamp #2 on)

onto the stack.

So long!

(Lamp status Time --)

**x* T,AST COMMAND IN SLIDE

253

SETHEX

LCHEX

R2=C

LCHEX

RO=C

A=DAT1

D1=D1+

R1=A

C=DAT1

D1=D1+

?2C=0 A

GOYES

LCHEX

R4=C

GOTO

LAMP2

FAD

LCHEX

R4=C

E2

LCHEX

ouT=C

LCHEX

D=C

SETUP

LOO

A=RO

C=R1

D=D-1

GONC

A=A+C

C=R2

?A>=C

GOYES

LCHEX

D=C A

RO=A

Pl

C=IN

2C=0

GOYES

Control The World with HP-IL

00120

00005

LAMP2

280

FADE2

180

080

00004

LOOP1

EXIT

00004

A

LOOP1

SHOW. **x*

*** FADES CURRENT LAMP OFF . ***

Store wait time in RO.

Pop dissolve speed

off stack.

Store dissolve speed in R1.

Pop lamp status

off stack.

Is lamp #1 on? If so, branch

here to handle different

setup.

Bit map for lamp #2.

Store in R4.

Bit map for lamp #1.

Store it in R4.

Enable zero crossings.

Constant in D increases

dissolve length.

Load wait time into A.

Decrement wait time.

Exit if at full brightness.

Reset D counter.

Store new wait time in RO.

Wait for zero crossing.

LCHEX

OouUT=C

C=R4

LOOP2

A=A-1

GONC

ouT=C

GOTO

EXIT C=0

OoUT=C

RTNCC

END

080

LOOP2

SETUP

Slide Projector Dissolve Unit

Shut off bulb, enable zero

crossings.

Delay for pre-determined

amount of time.

Start again.

Shut off both bulbs

and disable zero crossings.

The show's over.

Although I'm not a professional photographer, this dissolve

unit has been a reliable tool that has enhanced my slide

presentations tremendously. But even if you're not heavily into
photography, you have learned one method of how computers can

control the analog world, and most of all have obtained a better

idea of the extended control capabilities of the 71.

Special thanks goes to Mr. Sergio Morales for his theoretical

guidance and helpful suggestions while designing this project.

255

Control The World with HP-IL

 266

Chapter Eleven

AN INTRODUCTION TO RS-232

Standards are wonderful--Everyone should have one of his own.

--Anonymous

The HP82164A HP-IL/RS-232-C Interface is a most confusing

device to use; not solely due to the haphazard ways it must be
programmed by the controller; but also due to the confusing way

RS-232 has evolved.
RS-232 is perhaps the most non-standard "standard" in the

world, mostly since in the beginning each manufacturer had their

own idea of how it ought to work and implemented it that way. In

general, the only thing guaranteed about RS-232 is that it won't

work on the first try.

If you wantto interface your computer to ANY RS-232 device, a

billion (well, maybe not) configuration options must be available,

and the user had better know what they all mean in order to not

give up the very first week. This is one area where HP-IL

outshines RS-232 in terms of I/O for personal computers: The

most basic functions like printers, displays, etc., are already taken

care of for you and will always work on the first try, so a user never

need concern themselves with low-level operation or connection

thereof. (Other functions, admittedly, require knowledge of the

protocol which is a little more complicated; but most people will

never have to worry about it. You, having read this book and

therefore wanting to implement the more difficult stuff, are

obviously the exception.)

When a byte is sent by RS-232, only one wire is used instead of

eight, and the information is transmitted serially (one bit after the

other) rather than in parallel as with the GPIO. On an RS-232

257

Control The World with HP-IL

link, each transmitted byte is also accompanied by the information
in Fig. 11-1:

~~|Start Bitf~~q Data [~~~~~~~~ Parit ~~~4 Stop Bits [~~~[Start_Bit} [Parity }~~~{Stop
\

\

\
v

e
y

-
y

\

\
\
vN

1 Bit 7 or 8 Bits 0 or 1 Bit 1 or 2 Bits

(None, Odd, or Even)

Figure 11-1

WhatElse is Sent
Along with a Byte
of Data

And the bit stream would look like this:

011011001110011001100110111101001100110110011100110011

The data sent can be represented either by 7 bits (which is all
that's required to represent the entire ASCII-defined character
set) or 8 bits (the default nowadays,as it allows a full character set
as well as a wide assortment of cursor control characters and
graphics commands to be sent).

The Start bit is used to get the receiver ready to receive data by
giving it something on which to synchronize. Even though the
transmitting speed is known at the time of data transmission, the

synchronization function must still be performed.
The parity bit is a simple form of error checking and it works

like this: when Even parity is specified, the transmitting program
adds up the total number of "1"s found in the data field. If there is
an odd number of "1"s counted, the parity bit is set to 1; it is zero
otherwise. Odd parity is just the opposite; the parity bit is set to "1"
if there is an even (flagging an error) number of 1's counted. The
idea behind the inclusion of a parity bit is to be able to recover from
the most common type of transmission error: when a single data
bit is missing. The receiving device (printer, modem, etc.) must,

after receiving every byte, verify that the parity bit correctly

258

An Introduction to RS-232

describes the number of 1's in the data field. (If it doesn't match,

the device is supposed to request the computer to retransmit the

last byte via established protocol techniques.)
The stop bits simply signify the end of a transmitted byte. Either

1 or 2 bits is necessary to perform this function.

Because of the variety of valid options listed above, it is
imperative that both the sender and receiver use the same format
for representing data. Most computers have unfriendly

configuration routines where you must answer prompts

requesting how many data bits, what kind of parity (Odd, Even, or

None?), etc. Other devices, such as the HP-IL/RS-232 Converter,

must be configured via software (even more unfriendly than the
above) to format the information the correct way. In many cases, it

does not matter what you set the parameters to, as long as both

devices on each side of the RS-232 line agree.
The HP-IL/RS-232 converter can be software configured in one of

two ways: DDT and DDL commands (just like the parallel interface

devices), and Remote mode commands. We'll cover those in a few

pages, but first we must address the question as to why a computer

and a serial printer seldom work right when hooked together on

the first try.

Many implementations of RS-232 use only 3 wires as shown in

Fig. 11-2:

TxD(2) (2)RxD
RxD(3) ———(3)TxD

GND(1)—— (1)Gnd

Figure 11-2
3-Wire RS-232
Scheme

The top line, TxD (Transmit Data), is used to send information

from the computer to the RxD (Receive Data) line connected to the

modem. The middle line performs the same function for

information coming from the modem to the computer. Notice the

different pinouts on both sides of the connecting cable: TxD is pin 2

on one side, and pin 3 on the other. The original idea behind doing

259

Control The World with HP-IL

it this way was that all computers would universally be wired as
shown on the left, (called DTE, for Data Terminal Equipment) and
all peripherals would be wired up as in the modem on the right
(also called DCE, for Data Communications Equipment). That
way, only a "straight-through" RS-232 cable would ever be needed
to hook any two devices together.

Well, that neat little idea certainly got out of hand. Today,
manufacturers of computer equipment may use either DTE or
DCE wiring on their RS-232 ports, and will interchangeably use a
male or female 25-pin connector, male or female 9-pin connector, a
DIN connector, modular phone jack, or anything else they can
think of. So as you can see, the only existing standard is that
nobody conforms to the existing standard.

As a result of this mass confusion, you will occasionally find
that both the computer and the modem manufacturer installed
their RS-232 port the same way--usually DTE configuration. The
usual solution to this is to use a "null modem cable", which is
simply a cable with at least pins 2 and 3 reversed to compensate for
the sameness on both sides.

4——e

L
L
1
]
1

w w

The full implementation of RS-232-C is actually more
complicated than the 3-wire scheme described above.
Handshaking is included with the serial lines to facilitate a printer
that has no data buffering ability, and a reasonable
implementation looks like Fig. 11-3 on the next page.

(Notice I said "reasonable implementation". The RS-232
standard actually allows for 20 of its 25-pin connector to be used
("So that's why the connector's so big!") and hooking up one of
those can get to be really hairy!) And if both devices are configured
as a DTE,a larger null modem cable must be wired up to look like
Fig. 11-4.

260

An Introduction to RS-232

DTE DCE

Transmit Data (2) (2) Receive Data
Receive Data (3) (3) Transmit Data

Request To Send (4) (4) Clear To Send

Clear To Send (5) (5) Request To Send

Data Set Ready (6)—— (6) Data Terminal Ready

Data Terminal Ready (20)— (20) Data Set Ready

Ground (7) (7) Ground

Figure 11-3
Closer to the
RS-232 Standard

Fortunately, null modem cables (usually an expensive item since

the manufactures know darn well that the users don't have the

time to sit down and fabricate their own) aren't necessary with the

RS-232 Converter. Within its confines is what HP calls a

configuration selector, which is actually a 16-pin jumper plug.

When inserted one way, the device is wired as a DTE. When

inserted end-for-end, it becomes a DCE. Voila!

The handshake lines, as diagrammed above, function in

precisely the same way as they do for the 8-bit ports described in

[
|

——————
Figure 11-4
Null Modem Cable

O
N
n
h
H
h
w
O
W
N

 NN
O
W
D

N o
N

261

Control The World with HP-IL

Chapter 1. But in the more recent 3-wire applications,
handshaking mustbe taken care of by software. The most
common software handshaking scheme is called XON/XOFF,
getting its name from the ASCII characters that the device sends
in order to start/stop data transmissions from the computer.

It works like this: the device can tell the computer to stop
transmitting by sending it an XOFF character (=decimal 19).
(Unlike the 8-bit ports, the RS-232 interface allows you to send
information in both directions at the same time. If this wasn't the
case, the XOFF command would be lost.) If the computer has
previously been programmed to respond to XON/XOFF protocol,it
will stop transmitting until it receives an XON (= decimal 17) from
the device.

Another handshake protocol similar to XON/XOFF is called
ENQuire/ACKnowledge, and functions more like the hardware

handshake: Before the computer sends a word, it sends the ENQ

(= decimal 5) byte. If the device is ready to receive, it acknowledges

the inquiry by sending an ACK (= decimal 6) back. Generally, this
is done every time a block (an arbitrarily defined amount of bytes)

is to be sent.

Well, this sure is getting complicated! The really tough part

about interfacing with RS-232 is figuring out which combinations

of options to throw together so the two ends of the cable will act
harmoniously. (The toughest job of all was for HP, for they had to

make a device that was versatile enough to hook up to ANY
implementation of this molested standard.) Sometimes, as with
hooking up a printer or modem, the communications parameters
are designed in, so all you have to do is program the interface to

match what the printer or modem is configured for. Fortunately,

this aspect of interfacing is straightforward.

The HP-IL/RS-232 Interface can have its communications

parameters software-specified by two different methods: DDL

(Device Dependent Listen) commands as explained in Chapter 1,

or Remote commands. Both are equally easy to implement. The

control register descriptions can be found in Appendix D of the

RS-232 Interface's Owner's Manual. Likewise, the Remote

commands list starts on pg. 37 of the same manual. An example
of each follows using the 71 as a loop controller.

262

An Introduction to RS-232

10 ! PRTDRV print driver for the LaserJet Printer.

20 A=DEVADDR ("RS232")

30 SEND UNT UNL LISTEN A MTA DDL O DATA 0,0,0,0,0,0,0,

14 UNT UNL

40 PRINTER IS :RS232

In the example above, the interface is programmed via the DDL

0 command. The subsequent data bytes specify the following

attributes:

Bytes 0-2 (RO-R2) are all 0, signifying that we don't care about

service request conditions in this example.

Byte 3 is 0, indicating that we will not be deleting/replacing

special characters in the data stream.

Byte 4 is 0, disabling the handshake lines that the Laserdet

printer never pays attention to.

Byte 5 can be anything, since it only shows the status of three of

the unused handshake lines when a STATUSis requested from

the host. In this case, it was left as 0.

Byte6 is 0, indicating one stop bit, eight data bits, and no parity.

Byte 7 is 14, indicating a transmitting speed of 9600 bits per

second.

No more DATA bytes were sent, indicating that the default

values for the remaining registers should suffice.

(A quick re-examination of Appendix D indicates that all the

default values in the control registers were exactly what we

specified; meaning the first three lines in the above program

weren't needed at all. (This is a very rare case, mind you. The

example was included here to illustrate more normal cases.)

In addition to the software configuration, the Interface must

physically be changed to look like a DCE by reversing the control

selector jumper plug inside. After this is done, only a straight

through, pin-to-pin 25 line ribbon cable is needed to join the

Interface and the LaserJet. The printer only uses one handshake

line, DTR (Data Terminal Ready), to tell the computer that it's not

ready to transmit. DSR (Data Set Ready), the computer's pin that

receives the DTR signal, automatically reacts to this and doesn't

263

Control The World with HP-IL

have to be initiated by the control registers.
The only drawback one might experience with this printer as

driven by the 71 is that when anything is printed, the last page is
NOT ejected from the printer because the 71 doesn't terminate
PLIST commands with a FORM FEED (= decimal 12). Sure,
programs that print should be responsible for generating the
FORM FEED character, but PLIST and other functions require the
following human intervention to complete: 1) Hit the ONLINE

button to take the printer offline. 2) Hit the FORM FEED button to

eject the last page. 3) Hit the ONLINE button to take the printer

back online.

Let's try a different example. This time, we'll attempt to

compensate for the 71's lacking keyboard and display by hooking it
up to an IBM PC (a machine whose keyboard and display are also
lacking, but not as much) and using it as a dumb terminal.

Because the RS-232 parameters here are not fixed by either the
IBM or the interface, I arbitrarily set them to the following values:

PArity None No parity bits

DAta Bits 8 8 data bits

SPeed 2400 2400 bits per second (baud)

STop 1 1 stop bit

PMode 1 Needed for Crosstalk

DUplex Full Needed for Crosstalk

OUtfilter On Needed for Crosstalk

Configuration plug set to DTE (needed for IBM

RS-232 port)

Materials needed: KEYBOARD IS lexfile (available in the highly
recommended FORTH/ASSEMBLER ROM), and communications

software for the IBM, such as the popular CrossTalk package.

The KEYBOARD IS lexfile is one of those routines that is

implemented almost perfectly. The idea was to allow a keyboard of

realistic size and feel to provide input, and still allow the key

reassignments to take effect. If all you're going to be typing are the

alphanumeric characters, this is no problem. It is the f- and

264

An Introduction to RS-232

g-shifted keystrokes that provide the difficulty.

HP decided on using 2-character ESCAPE sequences to define

any one- or two-character 71 keystrokes by defining an "escape”

buffer which is used like this:

ESCAPE "A",50

After the above assignmentis typed into the 71, hitting the

ESCAPE key and then the "A" key on the external keyboard will

activate key #50 on the 71; the Up Arrow key. (Refer to the 71's

Keyboard map in their instruction manual.) (You should have

read this stuff in Chapter 8 anyway.)

The wonderful thing about CrossTalk is that any of the keys can

be reprogrammed to send out a string of characters rather than

justa single character. This way, hitting F1 on the IBM's

keyboard will generate the arbitrarily defined two-character escape

sequence the 71 expects to see. For this application, the IBM's ten

function keys were

redefined as follows using

Crosstalk's key
assignment file (note that

Crosstalk interprets '*]' as

meaning 'escape’):

F1 MNa

F2 7b

F3 e

F4 Ad

F5 e

F6 A

F7 Mg

F8 Al

F9 i

F10 7§

Photo #1 Yet another use for the RS-232

Converter.

265

Control The World with HP-IL

and the following 71 program makes use of these and the function
key escape sequences normally sent out by Crosstalk:

5 ! Program IBM uses XTALK to add keyboard + display

10 RESET HPIL @ CLEAR @ REMOTE

20 OUTPUT :RS232 ;"SEO;SE3;SBA;" @ LOCAL

30 ESCAPE "A",50 ! Assigns 8 to Up Arrow

40 ESCAPE "B",51 ! Assigns 2 to Down Arrow

50 ESCAPE "D",47 ! Assigns 4 to Left Arrow

60 ESCAPE "C", 48 ! Assigns 6 to Right Arrow

70 ESCAPE "a",43 ! Assigns F1l to ATTN

80 ESCAPE "b", 150 ! Assigns F2 to Command Stack

90 ESCAPE "c",159 ! Assigns F3 to far Left

100 ESCAPE "d", 160 ! Assigns F4 to far Right

110 ESCAPE "e",162 ! Assigns F5 to far Up

120 ESCAPE "f",163 ! Assigns F6 to far Down

130 ESCAPE "i",105 ! Assigns F9 to I/R

140 ESCAPE "j",104 ! Assigns F10 to -CHAR

150 KEYBOARD IS :RS232 @ DISPLAY IS :RS232 @ PRINTER

IS :RS232

160 END

Line 20 above is the crucial one. Using Remote mode

programming, it specifies the following parameters:

SEOQ: Disables all service requests.

SE3: Specifies service requests when the Receive buffer isn't

empty.

SBA: Specifies 2400 baud, because characters get lost at higher

speeds.

The other parameters-- one stop bit, No parity, eight data bits--

are all default settings and therefore don't need to be specified by

the program.

When using this IBM-to-71 system, there are, unfortunately, a

number of disadvantages. First is the IBM's keyboard, whose shift

and return keys are located where no one would expect to find

266

An Introduction to RS-232

them. Second is the slight incompatibility of the cursor commands

between the 71's display and the IBM's. For example, the I/R and

-CHAR functions delete the current line from the IBM's screen

before performing their functions. And when a line longer than 80

columns is displayed onto the screen, the wraparound function

works perfectly; but when the cursor is repositioned back to the

beginning by a series of backspace commands, the IBM's cursor

goes only to the beginning of the wraparound line.

By all admission, it ain't perfect. If you want perfection, see

Chapter 8.

267

268

Control The World with HP-IL

H
Y

o
w
p

APPENDICES

Barcode for 41 Programs.........ccccooceviiiiiiniiiiiniiiiinini. 271
Sources of Non-Standard Items.........cccoeeviiiiiininiiiiiinns 297
Dissertation as to Why Positive Handshake Logic
is Not Worth Pursuing......c..ccceeeeceuiirinniiiiiiniiiinnie, 301
Pinouts of Common Integrated Circuits........................ 305
GlOSSATY . e iniieit309

269

270

Appendix A

BARCODE FOR 41 PROGRAMS

CHAPTER 3

PROGRAM:CAMERA 35 REGISTERS PROGRAM USES 19 ROWS

T
T
AR
i
Sl
Wl
e
AoO
il
i

271

Control The World with HP-IL

PROGRAM:CAMERA

A
A
A
[o
(R
T
A
A
[N

272

Appendix A: Barcode

CHAPTER 4

PROGRAM:DKRM3 91 REGISTERS PROGRAM USES 49 ROWS

il
i
i
i
il————_m
W
i
T
A
o
ie
i
Al
il
As

273

Control The World with HP-IL

PROGRAM:DKRM3

T
OOoR
R
I
A
A
A
N
AA
N
A
A
I
N
ON
274

Appendix A: Barcode

PROGRAM:DKRM3

[
O
A
S
A
A
O
MR
O
S
S

LINE

S
247-

NN
i

275

Control The World with HP-IL

PROGRAM:DKRM3

(T
(A
S
T

276

Appendix A: Barcode

PROGRAM:DKRM4 138 REGISTERS PROGRAM USES 74 ROWS

A
(A
[
i
i
A
o
i
AA
A
o
A
i
A
i

277

Control The World with HP-IL

PROGRAM:DKRM4

A
T
AN
g
I
Ao
L
(A
I
A
T
AOGRm
(A
A
AR
278

Appendix A: Barcode

PROGRAM:DKRM4

CR
T
i
AA
i
A
R
WA
A
A
(i
iS
g
iA
i

279

Control The World with HP-IL

PROGRAM:DKRM4

(g
G
I
T
g
T
Go
A
(o
A
N
A
A
Ao
N
280

Appendix A: Barcode

PROGRAM:DKRM4

il
L
A
iR
AA
iO
A
iAA
i
ilAR
il
oT
e
i

281

Control The World with HP-IL

CHAPTER 5

PROGRAM:HAPPY 34 REGISTERS PROGRAM USES 18 ROWS

W
AR
I
N
N
U
A
T
A
A
T
A
T
e
S
282

Appendix A: Barcode

PROGRAM:HAPPY

LT
(O
i

283

Control The World with HP-IL

PROGRAM:TIMED 25 REGISTERS PROGRAM USES 14 ROWS

(T
NAL
N
Ao
A
o
AR
o
A
R
[
(A
A
(A

284

Appendix A: Barcode

CHAPTER 7

PROGRAM:INTT2 35 REGISTERS PROGRAM USES 19 ROWS

WAR
i
AR
A
T
LA
A
ioAT
T
A
S
AO
T
o
A

285

Control The World with HP-IL

PROGRAM:INTT2

O
(o
S
S

286

Appendix A: Barcode

PROGRAM:GPIO 10 REGISTERS PROGRAM USES 6 ROWS

TT
A
iA
i
WA
i~

287

Control The World with HP-IL,

PROGRAM:ANSWER 61 REGISTERS PROGRAM USES 33 ROWS

o
(A
(R
T
O
A
ATR
[
IR
Ao
A
AS
So
AR
Y
288

Appendix A: Barcode

PROGRAM:ANSWER

A
B
A
o
A
WB
S
AY
S
O
A
A
O
e
S

289

Control The World with HP-IL

PROGRAM:ANSWER

o
A
A

PROGRAM:INTT4 10 REGISTERS PROGRAM USES 6 ROWS

i
T
ATR
A
O
(i
290

Appendix A: Barcode

PROGRAM:4132 13 REGISTERS PROGRAM USES 7 ROWS

[
A
T
A
T
A
S

291

Control The World with HP-IL

PROGRAM:4111 23 REGISTERS PROGRAM USES 13 ROWS

T
O
A
e
S
A
S
T
A
S
T
T
A

292

Appendix A: Barcode

PROGRAM:READI 10 REGISTERS PROGRAM USES 6 ROWS

A
lllll!flll!{lllNIN|H|I!lllllfllHIImliNlil'MIIHI!IIIIIIIHII!Il|!II!l|llllIIIIIUIIIINIII!||||IIII<II1I||III\I|IIIIIHII\

Sl

Sl

O
G

PROGRAM:ACCHAR 4 REGISTERS PROGRAM USES 2 ROWS

i
sy

PROGRAM:FLIP 5 REGISTERS PROGRAM USES 3 ROWS

G
LINE

GA
i

293

Control The World with HP-IL

PROGRAM:MSG2 28 REGISTERS PROGRAM USES 15 ROWS

T
L
N
A
A
T
A
A
T
e
S
S
T
A
S
294

Appendix A: Barcode

CHAPTER 2

PROGRAM:TTONE 26 REGISTERS PROGRAM USES 14 ROWS

N
(R
A
T
A
L
A
AT
A
(TAR
A
A
D,
ili

295

Control The World with HP-IL

296

Appendix B

Sources for Non-Standard Items

This appendix lists several excellent sources of hardware,

information, and services for and relating to HP handheld

computers.

Hardware

Polaroid Sonic Ranging Module..........cccoooviiinininiiinininnnee.$60

SC-01 Speech Synthesis Chip......ccooimiiiiiiiiiiniiinicnis$22

available from:
The Micromint, Inc.

25 Terrace Dr.

Vernon, CT 06066

(800) 635-3355

Teltone M-980 Call Progress Tone Detector

Teltone M-957 DTMF Receiver

available from:

High Technology Semiconductors
Tustin, CA

(714) 5444871
(408) 942-0600

IL Converter Parts

HP-71 Torx wrench available from:

297

Control The World with HP-IL

EduCALC Mail Store

27953 Cabot Road

Laguna, Niguel, CA 92677

(714) 582-2637

Otrona Keyboard available from:

Advanced Computer Products
P.O0.Box 17329

Irvine, CA 92713

1310B E. Edinger

Santa Ana, CA 92705

(800) 854-8230

Custom Conversions, (41+71), and any HP-specific modifications:

S.0.S.

1850 E. 17th St. Suite #102

Santa Ana, CA 92701

Books

The following books are available from:

EduCALC Mail Store

27953 Cabot Road

Laguna, Niguel, CA 92677

(714) 582-2637

The HP-IL System

THE HP-IL SYSTEM: An introductory Guide to the

Hewlett-Packard Interface Loop by Gerry Kane, Steve Harper,

David Ushijima; Osborne/McGraw-Hill, 1982

298

Appendix B: Sources for Non-Standard Items

71 IDS Volumes

Highly technical, complete documentation of the 71B hardware,

bus, and operating system. The Internal Design Specification

comes in five volumes:

#71-900068 Vol. 1, Detailed Description.......c.ccccuvvvvvnnnne$ 50.00

#71-900069 Vol. 2, Entry Points.....cccceevviiiiiiiiiiiiiinnnnnnnnnne.50.00

#71-900070 Vol. 3, Source Code.....cceuervirnvriiiiiiniiinnnnnens 200.00

#71-900071 Vol. 4, Hardware Specification...........ccccuen.e. 200.00

#82401-90023 Vol. 5, HP-IL Module Source Code...............50.00

299

Control The World with HP-IL

300

Appendix C

Dissertation as to Why Positive

Handshake Logic is Not Worth

Pursuing

HP says their GPIO and IL Converter interfaces can be

programmed to have positive handshake logic, while I say it's so
difficult to implement that it's hardly worth the trouble. (Some
people might also feel this way about Chapter 10.) What follows is
a detailed discussion as to what is involved when implementing

positive handshake and why I avoid it.

The whole problem stems from the fact that 1) positive

handshake logic must be initiated via DDL commands sometime
after power is applied to the GPIO, and 2) if the handshake lines

are held in the improper states, (if the outside world looks as if it's

not ready), the 32-register buffer fills and locks up all

communication on the loop as well as the controlling computer's

program. This same "ready” condition must also exist in order for
DDL commands to execute properly, which means your external

circuitry must use negative handshake logic before the switch and

positive handshake afterwards.

For example, here's a step-by-step account of what happens

when positive handshake is requested:

When you first power up, the GPIO is in its default negative

handshake mode (which means Ov is interpreted as "1", and 5vis

interpreted as "0"; just the opposite of its data lines), and the two

incoming handshake lines (RDYI and DACI) must be grounded in

order to establish data transfers or initiate any Device Dependent

instructions.

When the positive handshake logic is set via the DDL 0

301

Control The World with HP-IL

command (see Chapter 1), it instantly takes effect and the GPIO
then hangs and waits for the two incoming handshake lines to go

to 5v (the new definition of "I'm ready") before proceeding.
If this outside event doesn't occur, the DDL command is never

completed, and everything (including the commanding computer)

freezes up.

This requires some sortof external circuit which knows
precisely when the positive logic bit is being set so that it can
change the status of the handshake lines the instant it's required.
How does the external circuit know precisely when to do this?
Because the original IL Converter thoughtfully possessed the
HLLO line, which instantly switches states to alert the circuit of

precisely this condition!

However, the 82165A HP-IL/GPIO interface doesn't even provide
the HLLO line. (This deficiency is further aggravated by the unit's

lack of PWRDN and WKUP lines, large size, and its insistence on

being powered from an AC outlet.) According to HP, the only way

to get positive handshake on it is by human interference: First, run

the program. Then, connect the external device to the interface

when it locks up. Again, very inconvenient and no benefits are

obtained.

The only way I can possibly imagine to implement HP's

suggested solution is shown in the figure top right. Six XOR

(Exclusive OR) gates in series with all handshake lines, are all

controlled by the HLLO signal. When the HLLO line goes low

(signalling that positive handshake logic has been specified by the

computer), it goes into all of the XOR gates and inverts their

otherwise negative output. Not a difficult solution, but certainly

less efficient than the bottom figure, which uses only one chip, less

wiring, and doesn't even need a complex DDL 0 command. (This

is substantial when the 41 is the controller.)

I use a simple solution for both interfaces as shown in the lower

figure: just attach one extra component, a Hex Inverter, to all six

handshake lines, and stick to the default negative logic. This

keeps all configuration automatic and retains versatility, and in

many cases eliminates the need for an IL Converter configuration

routine.

302

Appendix C: Positive Handshake

HLLO

______ One Way to
4070 Quad Achieve Positive

Exclusive OR Handshake Logic

Gates Using the HLLO Line.

DACI 4_:_o<—:— A Simpler Way
Which Works on'

DAVO __‘_|>°:_’ All 8-Bit Ports.

4069 Hex

Inverter

I believe that the positive handshake option exists because

Hewlett Packard designed the interface to be truly versatile, and

for thatthey should be applauded. However, using the hex

inverter is a much better method to achieve this because it

simplifies the software and removes the need for human

intervention.

303

304

Control The World with HP-IL

Appendix D

PINOUTS OF COMMON ICS

4069
Hex Inverter

+5V +5V

- o

- IS

=
o

[o
12

1 =
o
e
I
k

|

L 2

l»
—l
e
o

|o
o

|
|

L
2

el

M
e

r

4081 - 4001

Quad AND Gate Quad NOR Gate

305

1
’—E = Vp
1 oo o7

3 D7

Control The World with HP-IL

- 20

®o) C
—H-p1 D6

—01> Coe

02 05

-D2> CDS

| D3 4
4D Co

Gnd LE
1

a"
l‘
:

Tl
Io
]

r
N

10
74C373

Octal Latch

f

+5V

I;
DAVO

eLatched Data Out

306

+5v

,
= w

0
z
U

O

1
|

/T SU
Z
L
R

e

'

l
m
n
\
‘
n
m
[
l
s
e
O

0
=

o

4027 Dual
J-K Flip Flop

Appendix D: Pinouts

o

1

P P
DB7 74C373 _—3-|:|2

pBs —2 Latch PE——n
0] 1 11 5I:

sgTP3
= ;P2

DAVO —0] sT8

paci —<J———

O

AR
4 73 pes——1] Ps

pB4 —5P*
DB3 —-1 P3

RDYI —-—_L

AO

AF
CB

GND
TP1

MCRC
MCX
PO
P1
P2

SC-01 Speech Synthesizer

3579 MHz _|[

XTAL =_E__ —Z—E

CE

a4
Out ——4——[Detect

Vss

Sigin
0.
0
£

M-980

Call Progress Tone Detector

dSv

1KQ

330KQ

330KQ

220pF

In ("B"

From Transformer)

307

Control The World with HP-IL

+5v
DA4

DAS

DA6
DA7:_J_

5v . | — 22
DAO_ZC Do D1 %= DA1

3 Hex D2 320— DA2
->§EAE CE s Hg——— DA3

S CGnd _ CLR 318_| 1 2
12/16 sTB :'W“D'— DAVI

a,—_7 Vp Auxclk ~— 1Megohm
O eo Osc/Clk
8] XIN _ _I 5; 3.579 MHz

< XTAL°g XouT -T
o Gnd o"g- Sig. In Signal In B" From

Transformer

M-957 Touch Tone®Decoder IC

+5v

]\11: vss ~ vdd -8
= 2] Oscln Tone 17

3 Ne Filter [716c—a

3'57)%?\'1[‘2 T4 oscou CE 15
5] Mute Cntl []14
6 c4 R3 [}-3 8 -

3

g2 e: R3 " 5 -
c2 R4 [HO— ; 8

£

MM&E395 Touch Tone® Generator

308

Appendix E

GLOSSARY

A/D Converter
Analog to Digital Converter. One useful tool that takes real

world information (usually measured via an analog sensor,

such as a microphone for sound, a photo cell for light, etc.)

and converts it to a digital form, which is something the

computer can work with.

Accessory ID

One of two ways an HP-IL peripheral can identify itself.

Accessory IDs are comprised of a number (rather than a

name) that classifies it as a type of device (i.e. printer, video

interface, etc.). This makes it easy for a computer when you

tell it to print something; it just look for the first printer and

sends the information there, without caring whether its a

thermal printer or a ThinkdJet variety.

ASCII

Bit

American Standard Code for Information Exchange. A

recognized standard for representing alphanumeric

characters by 1's and 0's.

A single signal that can only have two states: "1" or "0";

(sometimes referred to as "on" or "off".) Most computers are

loosely based on this concept.

1) A "computer' magazine that isn't even aware of HP's

existence. 2) A collection of 8 bits, normally assembled to

309

Control The World with HP-IL

represent an ASCII character or a number. BYTE used to
refer to the computer's internal word size back in the days
when micros had an 8-bit architecture.

CMOS
Complimentary Metal Oxide Semiconductor. Fancy name
for an integrated circuit fabrication technique whose chief
attribute is very low power consumption. Rival fabrication
techniques include TTL (Transistor- Transistor Logic), and
NMOS.

CR/LF
Carriage Return/Line Feed. These are two ASCII
characters automatically sent after each line of transmitted
data, and are analogous to the return bars on the old manual
typewriters. Well designed computers allow you to either
disable this automatic sending feature or replace the CR/LF
with special characters of your own choosing.

DCE
Data Communications Equipment. The fancy name used to
describe the wiring configuration of an RS-232 device. DCEs
can only communicate with a device wired as a DTE.

DDL
Device Dependent Listen. An HP-IL command that instructs
peripherals that the following data should be interpreted as
configuration instructions rather than data. An HP41 must
have either an Extended /O ROM or an IL Development
ROM to generate this important command.

DDT
Device Dependent Talk. An HP-IL command that instructs
peripherals to send some information about its status to the
listener, rather than sending what it usually does when
configured as a talker. The HP41 requires either the
Extended I/O ROM or the IL Development ROM in order to
generate this important command.

310

DIE

Appendix E: Glossary

Data Terminal Equipment. The fancy name used to describe

the wiring configuration of an RS-232 device. DTE devices

can only talk to a device wired as a "DCE".

The name of the 71's line editor. This program is available

in either the FORTH/Assembler ROM or the Text Editor

ROM.

Escape Sequence
A cryptic string of characters, preceded by the "escape”

character (decimal 27), which is often used to tell a

peripheral how to configure itself. Printers often employ

escape sequences to let the host computer set their boldface,

double wide, or italics mode. There is no real standard for

escape sequences; it seems every peripheral manufacturer

arbitrarily defines some random string when designing

their peripherals, therefore most printers are not really

compatible with each other.

Extended/OROM
One of two 41 plug-in ROMs that allows finer control of

HP-IL. Since it uses the ALPHA register as a transmit

buffer and generally provides higher-level commands than

its counterpart (the IL Development ROM), it is considered

the friendlier of the two.

frames
Another word for "HP-IL message".

GPIO
General purpose input/output, a term specifically referring

to the HP82165A 8-bit port. Often, to save my breath, this

term will be used as a generic term to describe ANY of the

three 8-bit ports as discussed in Chapter 1.

HP-IL
Hewlett Packard Interface Loop. An interface scheme where

all desired peripherals are strung together with a

311

Control The World with HP-IL

2-conductor "thread", allowing selective communication
with any or all peripherals on the loop and instant error
checking. Both the 41 and 71 employ this method of I/O.

/0
Input/Output. (Most people erroneously associate it with one
of Jupiter's moons.) Catch-all phrase for the way the
computer communicates with the outside world. The GPIO
is one form of I/O;so are the keyboard and display.

IDY
Identify. The equivalent of idle small talk when nothing's
happening on the loop.

IEEE

Institute of Electrical and Electronics Engineers.

IL DevelopmentROM
One of 2 41 plug-in ROMs that allows finer control of HP-IL.
Amongst its offerings is absolute low-level control of IL
messages, a SCOPE mode for monitoring messages traveling
through the loop, and a large general purpose data buffer for
sophisticated I/O. Much more powerful than its counterpart

(the Extended I/O ROM), and therefore more difficult to use.

IL Module
An optional peripheral that allows the 41 and 71 to access the

Hewlett-Packard Interface Loop. Both the 41 and 71 use

different attachments to add this capability; many other

portable computers come with them built in.

KEYBOARD IS
An extra feature of the FORTH/Assembler ROM that allows

a larger, external keyboard to replace the 71's own

Smurf-sized keyboard. This LEXFILE is also available

separately from HP.

LED
Light Emitting Diode. Functions like a normal diode except

it gives off light when forward-biased.

312

Appendix E: Glossary

LEXFILE
Short for Language Extension File. LEX files are assembly

language routines that extend the 71's BASIC language

environment, and are capable of adding new keywords,

responding to system polls, rearranging the keyboard layout,

and translating error messages to another language.

Opto-Isolator
Short for Optical Isolator. A method of switching a high

voltage item from a low-voltage signal without exposing the

signal to high voltage hazards (analogous to arelay's

function). Opto-Isolators work by having the small signal

drive an LED, and having the heavy load driven by a

photosensitive transistor. Two common types are available:

3010, with a triac driver output, and the T11, with a

photo-darlington pair.

phoneme
The basic sound components that comprise the English

language. These are not quite the same as vowel and

consonant sounds; for example the sound "I" can be broken

down into two phonemes: "Aaa""Eee" (Aaa as in father, Eee

as in Ellipsoid).

PWM
Pulse Width Modulation. An unobvious way to dim an AC

lamp by turning it on and off very quickly rather than

reducing the lamp's peak voltage.

reorder
One of the possible sounds that can be heard after dialing a

telephone number. A reorder sounds exactly like a busy

signal except it is twice as fast; and is used to signify that "all

the circuits are busy now; please try your call again later."

ROM
Technically an acronym for Read Only Memory, originally

meant to distinguish it from RAM, meaning Random Access

Memory. (The label is somewhat misleading; as the

information in both types can be randomly accessed.) ROM

313

Control The World with HP-IL

has its information programmed in at the factory, and,
unlike most RAM, retains the information forever. This
makes it an ideal distribution medium for application
software, which is commonly sold as a "Plug-in ROM".

Service Request
When a device on the loop wants the controller's attention,
(such as when someone presses the PRINT key on the IL
thermal printer when it's attached to the 41), the device must
set a bit on the passing frame to alert the controller that
someone needs attention. Usually, the passing data bytes are
a valid transport mechanism, but when there is no routine
traffic, the controller can constantly send IDY (Identify)
commands during otherwise idle times to allow peripherals
to make their needs known.

Synthetic Instructions
HP-41 instructions that cannot be entered into memory by
normal means but execute flawlessly once there. This
powerful technique has been the subject of many books (refer
to Chapter 1), including one that the publisher is willing to
endorse.

Touch Tone (®)
A trade name referring to an efficient tone-signaling method
of telephone dialing. Rather than utilizing pulse trains as in
the olden days, the digits are specified using two
simultaneous, non-harmonic sine waves that sound to many
people like musical notes in the earpiece.

ZENROM

314

A plug-in application ROM developed in Great Britain to
allow direct-entry synthetics and an MCODE programming

environment for the HP-41.

Appendix E: Glossary

315

Control The World with HP-IL

316

AFTERWORD

"Writing a book to increase the world's knowledge is like taking an
eyedropper to the Pacific Ocean and saying, ‘Here.""

-- G. Friedman

Well, I finally got that book off my chest. Most people will view
the contents as an illumination into the world of computers.

However,it should be viewed from a little larger perspective.

Every time we notice a quasar's double image separated by a

couple of arc minutes, we can infer another gravitational lens due

to the mass of about a million previously unnoticed galaxies. A

million galaxies here and a million galaxies there; pretty soon it

adds up to real mass. According to Friedman [1], the universe is

either open or closed, depending on its total mass. As we discover

more mass lurking out there in the dark corners, we can

increasingly look forward to a collapsing closed universe, instead

of a perpetually expanding (open) universe. Thus, our eventual

end will come in a "gigantic crunch" in about 1011 years rather

than the thermodynamic "heat death" that would have taken over

107200 years. This is serious business; it's not every day that we

discover our future is cut back by a factor of 107189!

First of all, we are now about 10% of the way from the big bang to

the big crunch. This, therefore, is probably the last book -- and the

last afterword -- to be published during the first tenth of the life of
this universe.

Next -- and much more important -- certain computations

which were possible in an open universe are impossible in a closed

one. For example, consider the insightful paragraph within the

317

Control The World with HP-IL

rectangle at the bottom of this page. This message has about 100
characters,or 600 bits (assuming 6 bits per byte, which is all thatis
needed in this case). In order to construct this message by random
search, 27600 (which is roughly 107180) distinct states must be
tested. In the open universe of 107200 years, we would have plenty
of time; in the closed universe of only 10”11 years, we would not
have nearly enough time, even if we converted all the universe's
10790 atoms into computers running at 10730 Hertz.

Thus, extremely convergent processes -- rather than random
ones -- must be at work. Friedman [2] has shown that evolution
and constraint theory have sufficiently powerful convergence over
purely random processes to produce observed results in times
compatible with closed universes.

Finally,just prior to the big crunch, when the Encino sky will be
as uniformly bright as the sun, the proximity of the 10790 atoms
will permit some truly massive parallel computing at a decent
cycle time. "Picture that!" Friedman [3] said.

As we rush to conclude, a note regarding motivations:
Friedman [4] favors financial gain. On the other hand, Friedman
[5] favors love. The truth, however, is the insight that Friedman
[6] brings:

The universe is all 1's and 0's.

All else is illusion. The bits

are out there to be crunched --

Go get 'em!!

References

[1] Alexander Friedman, a cosmologist with the same name as

my grandfather (but a little older) who developed the first models
of the expanding universe.

Barrow, "The Anthropic Cosmological Principle", Oxford 1986

318

Afterword

[2] George Friedman, my father, who erroneously thinks that he

has influenced me through either heredity or environment. MS
Thesis UCLA 1956; PhD Dissertation UCLA 1967.

[3] Gary Friedman, photographer for the Los Angeles Times, and

2nd best photographer bearing that name.

[4] Milton Friedman, Nobel Laureate in Economics, whose

hypothesis is that money is important in the affairs of mankind.

[56] David Friedman, the president of Adult Films Association --

the same name as my brother (but a little older) -- whose

hypothesis is that sex is important in the affairs of mankind.

[6] Gary Friedman, me.

This book, this page, this line, this this.

319

Control The World with HP-IL

320

INDEX

18% grey card, 80

555 timer, 49, 77

74C373 latch (see latch)

8-bit port
definition, 29

discriptions, 36
8-bitunidirectional mode, 123

82143A printer, 60

A/D converter, 76

calibration, 82

A/D full-scale compression and

expansion, 82

AAD, 14

AAU, 23

AC adapter, 222, 228

AC circuit precautions, 80

AC Devices, 46

AC transformer, 238

ACA, 6, 45

accessory 1D, 14-18

ACCHR, 6, 44

accuracy factor, 59

ACX, 6

ADCO0804, 76

ADROFF, 35

ADRON,35

ADV, 6

alarms, 53

ALMCAT, 56
ALMNOW, 100
ALMOUT, 55
alpha nulls, 114

ALPHA register, 3
Analog to Digital converter, 76

AND gate buffer, 240

AND gate mask, 239

answering machines, 149

ASCII, 44,176, 258
ASCII file "TIME", 116
representation, 51, 125

Asimov, Issac, 138

assembly language, 7, 8, 206,

208, 211
entering programs, 215

labels, 215

ATTN key recognition, 212

auto address, 14

auto address unconfigure, 23

autodialer, 119

autofocusing, 205

AUTOIO, 102,169
AVIEW, 45
bandpass filter, 129

BIN files, 226

binary

code, 123

321

Control The World with HP-IL

programs, 213

representation, 125

bridge rectifier, 238

busy signal

cadence, 128

state table, 130

subroutine, 130

buzzer, piezo-electric, 211

CALC mode, 7

calibration, transducer, 228

camera attachments, 60

capacitors, deviation from

marked values, 109

Carriage Return, 44

cassette drive, 3

CdS cell, 76

chip select method, 154

chirps, 72

circuitry damage, 162

clock control, 54

clock speed, 208

CMOS, 42,43

comparitor, 77

continuous ON flag, 72, 102

control bits, embedded, 126

converter interface, 43

counting in binary, 41
CPU for 71

IN and OUTregisters, 210

instruction set, 210

registers in 71, 209

unused pins, 211

CR/LF, 32

Crosstalk, 264

cursor commands, 267

CX modifications, 63

DACI,30, 49

DACO,31

darkroom controller

walk-through, 87

complete instructions, 84

Data communications

equipment(DCE)wiring,
260

data compression, 105

Data terminal equipment (DTE)

wiring, 260

DAVI, 31

pulse width, 77

DAVO, 30, 41

pulse width, 32

DCL,12

DDL, 12, 32, 47,134
DDT,12, 32

debug utilities, 8

device ID, 16

differential input mode, 77

digital filters, 106

DIP switch, 64

disassembly

new 71, 224

old 71, 219

discrepancies, ASCII and

binary, 125

disposable phones, 120
dissolve unit, 233

DSR (Data Set Ready), 263

DTR (Data Terminal Ready), 263

duty cycle, 234

echo, sound, 207

EDTEXT, 215
ENABLE INTR, 134

ENQuire/ACKnowledge

handshake protocol, 262

ENTER, 208

EPROM map, 193,197

Index

EPROMs, 182
error checking, IL, 101

ESCAPE buffer, 176
escape sequence, 3, 184, 265

expletive, 160

exposure bracketing, 60
exposure curve, 82

extended memory, 149

data files,, 116

external interrupts, 101

f- and g- shifted keystrokes, 265

fast busy signal, 136

FINDAID, 35
flags for the 41,17 45

flag 21,169
flag 55,103

flip-flop, 4, 49, 56,154

FORTH, 7
primitives, 226, 240, 248

FORTH/Assembler ROM (See

ROM)
Fourier analysis, 106

FRNS?,102
GETO, 32,156
GPIO

transfer buffer, 32

16-bit mode, 183

control register map, 34

power tap, 38

grey card, 18%, 80

HAL 9000 computer, 109

handshake, 30, 32, 49

logic, 31

pulse widths, 181
via software, 262

Happy Birthday, 114
hardware modification, 217

hardware precautions, 218

heat sinks, 27

heat, IC damage, 224

Hewlett, Billy, 138
hex inverter, 41

hookswitch status, 126

HP-IL,1,8,9
chip, 101

HP-IL/RS-232 converter, 259
hybrid transformer, 120

1/0, 53, 205
BASIC and FORTH

compared, 208

IBM PC, 175, 264
1IDY, 101,132
IL Development ROM (See

ROM)
impedance matching network,

245

INA, 7
IND, 7
inflection, 110

INSTAT, 7,102
interference pattern, 234

interrupts

restrictions, undocumented,

102

hardware, 212

ionosphere, measuring the, 230

1R14, 239
ISA line, 12

JK Flip-Flop (See flop)
Joseph 1I, Emperor, 172

keyboards

KEYBOARD IS, 9, 176, 264
scanning, 211

Otrona, 187

scanning techniques, 186

matrix, 177, 185

323

Control The World with HP-IL

parallel, 177

LAD, 12

Lassie, 133

last number dialed, 138, 140

latch, 74C373, 41,108
LED (See Light Emitting Diodes)
LEX files, 226

light bulb, 46

light dimmers, 233

Light Emitting Diodes, driving,

41
line feed, 44

line in/line ou,t 245

Load Bytes, 5

lock-up, 127

logic probe, 43

M-957 Touch Tone decoder chip,
124

M-980 Call progress detection

chip, 129
memory retention, 224

MLDL, 208

modifications, CX, 63

modular phone jack, 218

Morse code keyer, 211

MSRQ, 32,123,129
MTA, 33
mystery phrase, 113

NAND gates, 154

negative handshake, 159

null modem cable, 260, 261

offset voltage, 82

Ohm's law, 78

op-amp, 238

opto-isolator, 25, 59, 240

OUT register, 217

OUTA,6, 44, 45

outgoing call monitor, 138, 152

324

OUTPUT,208
parity, 258

passbands, 109

personal space invasion alarm

for Valley Girls, 230
PHBOOK,140

philosophy of tools, 103

Phineas, 53

phone usage monitor, 119

phonemes, 106

photo cell, cadmium sulfide, 76,
79

photographic print timer, 70

pitch (See inflection)

Polaroid SX-70, 205

power supply, 239

PPC ROM,5
PRA, 6
PRBUF, 6
PREPROC, 136

printer cable assembly, 60

PRINTER IS, 20
prototyping, 206

PRX, 6

pull-up resistors, 226

pulse expander, 77, 181

pulse width modulation, 234
PWRDN, 156, 169
R/S flip-flops, 154

RAT usage, 85

RC time constants, 109

RDYI, 30, 49, 113
RDYO,31
re-order, 136

reference negatives, 80

regulator, 5v, 109

relays, 25, 27, 154

REMote commands, 262, 266

Index

repeating alarms, 59
RFRM, 102

ribbon cable, 221

ringing signal detection, 128

rolodex function, 136, 141

ROM

Extended 1/O, 3, 24

FORTH/Assembler, 8, 210,

264

IL Development, 3, 23

RPN,2

RS-232, 29, 257

configuration selector, 261,
263

three-wire scheme, 259

null modem cable, 260, 261

Sagan, Carl, 138

SAI12

SC-01 speech synthesis IC, 106
SCOPE mode, 24,179

SDC, 12

SDI, 12

SELECT, 17

self-reference, 325

serial transmission, 257

service requests, 101,132,178,

263

shock potential, 80

slide projectors

advance, 243

connection, 245

software handshaking, 262
solder pads, 54

sound track synchronization,

243

speech

digitized, 105

inflection, 110

speed, machines, 114

square wave, 208

SST, 14

Star Trek, 113

start bit, 258

state table, 129

STATUS, 129,131

stop bit, 259

stopwatch resolution, 54

suspending alarms, 99

Synthetic Instructions, 4, 72,113

synthetic speech, 105,152

TAD, 12

telephone line interface, 120, 154

coupler, 120

FCC rules, 120

telephone number

preprocessing, 136

telephone, voice quality, 154

Teltone, 129

thermal printer, 3, 44

Thinkjet printer, 20

time module, 53, 206

timed exposures, 60

timer IC (See 555 timer)

torx wrench, 218

Touch Tone (®), 48,123,150

decoding, 124, 243

transfer buffer, 113

transmission errors, 102

triac, 26

TRIGGER, 7

troubleshooting, 43

tweaking enlarger time, 85

ultrasonic transducer, 205

UNL, 16

UNT, 16

usercodes, 158

325

Control The World with HP-IL

Valley girls, personal space

invasion alarm, 230

voltage

divider, 78

calibration, 80

swing, 79

destructive levels, 109

Votrax Co, 106

Vref/2, 82

VU levels, 245

word search, 210

WREG, 101

XON/XOFF handshake protocol,
262

XYZALM, 71

ZENROM,5

zero-crossing detector, 235

326

ORDER BLANK

Price
per
copy Qty Amount

For HP-71'S
HP-71 Basic Made Easy, by Joseph Horn $18.95

For HP-71'S & HP-41'S
Control the World with HP-IL, by Gary Friedman $24.95

For HP-41'S
HP-41 Advanced Programming Tips, by A. McCornack & K. Jarett $20.95

HP-41 M-Code for Beginners, by Ken Emery $24.95

Inside the HP-41, by Jean-Daniel Dodin $12.95

Extend Your HP-41, by W. Mier-Jedrzejowicz $29.95

HP-41 Extended Functions Made Easy, by Keith Jarett $16.95

HP-41 Synthetic Programming Made Easy, by Keith Jarett $16.95

(Includes one Quick Reference Card)

Quick Reference Card for Synthetic Programming $2.00

Synthetic Quick Reference Guide (SQRG) $5.95

For HP-10C, 11C, 15C, AND 16C
ENTER (Reverse Polish Notation Made Easy), by J.Dodin $4.95

Humor
It's Amazing How These Things Can Simplify Your Life:

The Harold Guide to Computer Literacy $4.95

ROM’s
Barcode Generating ROM by Ken Emery $199.95

AECROMby Redshift Software $ 99.00

Sales tax (California orders only, 6 or 7%)
Add’l

Shipping Ist book books

within USA, book rate (4th class) $1.50 $0.50

USA 48 states, United Parcel Service $2.50 $1.00

USA, Canada, air mail $3.00 $1.50

elsewhere, book rate (6 to 8 weck wait) $2.00 $1.00

elsewhere, air mail $12.05 for Extend Your HP-41, $6.05 for others

Free shipping for ENTER and It’s Amazing... with purchase of any other book

Frec shipping for QRC plastic cards or SQRG (any number)

Free shipping for ROM’s

Enter shipping total here $

Total due $

Checks must be in U.S. funds, and payable through a U.S. bank.

Name
Address

City State Zipcode

Country

Mail to:
SYNTHETIX, P.O.Box 1080, Berkeley, CA 94701-1080, USA Phone (415) 339-0601

CONTROL THE WORLD WITH HP-IL

Want to try something different than the usual programming applications with

your HP-41 or HP-71? "Control the World with HP-IL" will show you how to

use HP-IL to build and control such diverse items as an intelligent

telephone autodialef/answering machine (complete with a speech

synthesizer!), an automated photographic darkroom controller, an ultrasonic

distance measurement unit, a slide projector dissolve controller for two

projectors, and more. Imagine being able to accomplish all this with your

battery powered, portable calculator/computer!

All the applications are explained in clear, crisp terms, with an easy-to-

read informal style. Photos, illustrations, and circuit diagrams are used

throughout the book to make all project instructions easy to follow. The

general purpose building blocks and the concepts behind them are so clever

and creative that you’ll find dozens of your own uses for them.

Complete program listings and barcode included for all necessary programs.

ISBN 0-9612174-9-9

	Cover
	Table of Contents
	Foreword
	Ch. 1: The Basics
	Ch. 2: More Simple Examples
	Ch. 3: Inexpensive I/O Using the Time Module
	Ch. 4: Darkroom Controller
	Ch. 5: Speech Synthesis
	Ch. 6: Intelligent Autodialer
	Ch. 7: Telephone Answering Machine Utilizing Speech Synthesis and Touch Tone Decoding
	Ch. 8: Keyboards for the 71
	Ch. 9: Electronic Tape Measure
	Ch. 10: Slide Projector Dissolve Unit
	Ch. 11: An Introduction to RS-232
	Appendix A: Barcode for 41 Programs
	Appendix B: Sources of Non-Standard Items
	Appendix C: Dissertation as to Why Positive Handshake Logic is Not Worth Pursuing
	Appendix D: Pinouts of Common Integrated Circuits
	Appendix E: Glossary
	Afterword
	Index

